
Chapter 2 – Fundamentals of Linux Rev 50

Chapter 2
Fundamentals of Linux

This chapter looks into how the user interfaces with the basic Linux system
through the File Operating System, Administration, and Command Line
Interface. To understand how the file structure is set up, we need a fundamental
understanding of the file names, file path structure and how the user interfaces
the Linux Kernel. Finally we need to understand the multiple definitions of the
word root.

Concepts Learned in this Chapter
➢ File Operating System
➢ Linux Kernel
➢ User Interfaces
➢ Pathnames, Files and Directories
➢ The meaning of Root
➢ User Home Directory
➢ Password Security
➢ Shell Interpreters
➢ Client-Server Relationship

HLUL02
© Dennis Rice

1 / 22

Chapter 2 – Fundamentals of Linux Rev 50

Table of Contents
Fundamentals of Linux.. 1

2.1 File Operating System .. 3
2.1.1 Device Drivers ... 3
2.1.2 Standard Input and Output... 4

2.2 The Linux Kernel... 4
2.2.1 Hardware... 4
2.2.2 Kernel... 5
2.2.3 Shell Interface .. 5
2.2.4 Applications.. 5

2.3 System Administration ... 6
2.4 User Interface ... 7

2.4.1 CLI Mode... 7
2.4.2 GUI Mode .. 8

2.5 Command Line Interface .. 8
2.5.1 DOS vs. Unix / Linux ... 9

2.6 Graphical User Interface .. 10
2.7 Pathnames and Directories .. 10
2.8 File Storage... 12
2.9 Filenames ... 12
2.10 Definition of Root .. 13

2.10.1 The root ... 13
2.10.2 Administrator root .. 13
2.10.3 Home Directory /root ... 14
2.10.4 Group root ... 14

2.11 Home Directory .. 14
2.12 Password Security .. 14

2.13.1 Shell Comparison... 17
2.15 Commands Used in this Chapter.. 17
2.16 Chapter Review Questions.. 18

HLUL02
© Dennis Rice

2 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.1 File Operating System
The Unix / Linux Operating System (OS) treats information flow as the

transfer of information between different files. Everything appears as a file to the
OS – this includes data storage devices – disk and hardware interfaces.

The hard drive is a block file device that contain a series of files. The file
block device driver interprets the data going to the hard drive and takes care of
placing it on the physical device – thus the driver is responsible for tracking and
maintaining the hard drive operation rather than the OS. The driver is another of
the multitude of processes running in the background, making the total operation
appear seamless to the user.

Within the hard drive is a series of files. The first file is that which we would
call a directory. A directory is a unit that has as its contents other directories and
files. The easiest way to distinguish between a file and a directory is the format
that specifies the information that it contains. We can view a file as being a free-
format of information, whereas a directory is specifically formatted with
information about other files, structured to provide the name, size, attributes,
dates and location. So what is the difference between a file and a directory – at
least as Unix / Linux sees it – one byte. We only need one bit really, but this will
allow us to add more features as needed. For example, one bit set to zero
would mean it is a directory, whereas if it is set to a one, then it is a file.

The serial port of the computer is also a file. Data may be sent to it and
received from it. Also included with the serial port are the parallel, SCSI, USB,
keyboard, monitor, mouse, joystick, and network interface. These are all files
with respect to the Operating System. Data is sent to and retrieved from the
respective file.

2.1.1 Device Drivers
So how does the information get transferred to a hardware device? You have

experienced the situation of having to install device drivers when you install a
new device in the MS Windows OS. This device driver converts from the file
interface to the hardware, thus the OS can have a standard interface reference.
Look at this concept as what you have might have previously learned about the
OSI model.

During the installation, or when Linux detects a new device, it records it into
the appropriate file. In the case of storage devices such as hard drives,
CDROM, Zip drives, and Floppy Drives, the entries are stored in the /etc/mtab
and /etc/fstab files. We will investigate this file in advanced administration
topics.

As it is today, the vendors do not support device drivers for Unix / Linux like
they do for Microsoft Windows. MS established standards for interfacing to the
OS, and left it to the vendors to be compatible. For Linux, the user must create
the drives for the vendor hardware. Hence we have developed the open source
community to share this information. Hopefully in the near future we will see
improved standardization and they will provide drivers on the same floppy / CD
along with Windows, and a procedure will be available to install them. Now we
only need to have all the vendors support the standard.

HLUL02
© Dennis Rice

3 / 22

Chapter 2 – Fundamentals of Linux Rev 50

When you installed Linux, the device drivers were installed in the /dev
directory. If the device is unknown to Linux, it will not have a driver and will not
be able to operate.

So back to the device driver, it knows where to look for data in RAM, how to
notify the processor when there is incoming information (IRQ, I/O address), and
how to translate between the two to make the physical interface operate.

2.1.2 Standard Input and Output
Before we proceed with further commands, we need to understand how data

is transferred between a file and an application. Previously, we noted that Linux
treats everything as a file. This includes all hardware, including the keyboard
and monitor.

Figure 2.1: Standard Input and Output

When you type commands on the keyboard, this is considered a standard
input. After the command is processed, the output is displayed on the monitor,
the standard output.

We will observe later that we can direct the input to be from a different file
other than the keyboard, and direct the output to a file device other than the
monitor. To achieve this, we will use the redirector.

Another question arises, what if there is an error when the command is
executed. In this case, the output is directed to the standard error. Typically,
we observe that the standard error is directed to the monitor, where it is
displayed. But this opens another excellent feature. What if an application
incurs an error, but we direct the output to a logging file. As an example, say
someone attempts to log onto your system for a file transfer, and they enter an
invalid username / password; the system can then generate a error message
and append it to the appropriate logging file. We now have a track record of who
is attempting to gain access to our system.

2.2 The Linux Kernel
The design of the Linux system is centered on the base Kernel, developed by

Linus Torvalds circa 1990. To start, we need to view a diagram, and then
address what each part does and how the user interfaces the total system.

2.2.1 Hardware
Observe at the very center of our diagram (Figure 2.2), we have the hardware

of our computer. Note that it is totally isolated from the user – so we are not able
to issue commands directly to it, but must issue read and write data via various
software interfaces.

HLUL02
© Dennis Rice

4 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.2.2 Kernel
The Kernel is the actual

operating system software.
It takes commands from
users, via a shell, and
performs various operations
according to those
instructions. Everything to
the Kernel is a “file”. The
file then performs the
specific required action.
Instructions to the Kernel
are not the commands that
we type in, but rather
machine code. Note that
the Kernel Interface
isolates the user from the
hardware – one can not
issue commands directly to
the hardware, they must go
through the Kernel.

Figure 2.2: Linux Kernel

2.2.3 Shell Interface
Interfacing the Kernel is a special program that interprets what the user types

in and converts it to appropriate machine code that the Kernel can interpret.
What is great is that there are multiple shells available for each user to use,
depending upon their needs and / or desires. You may chose the shell that you
desire, and switch between shells as necessary. The most common (and
default) shell is the Bourne Again Shell, known as bash. More information on
the various shells is given below and in later chapters.

A special shell is the GUI interface known as X Windows, more appropriately
called just “ X ” As a shell, it interprets not only what the user types in, but also
mouse movements and clicks. But it is not finished – it must also generate the
screen and recognize when the mouse cursor is over a specific area and then
relate the mouse click into an action. Thus the X Window shell is quite complex
and does utilize a large amount of processor power. What is great, in Unix or
Linux, we do not have to utilize it – try that in Microsoft.

2.2.4 Applications
Finally, we have the many user applications. There are a few that reside

inside the shell, that provide you the most minimal ability to move around the file
system, namely the ability to change directory and list a directory’s contents – all
other commands must be created by an external program. The commands that
reside within the shell are referred to as internal commands. Over the years,
programmers have observed a need to perform various functions, and then

HLUL02
© Dennis Rice

5 / 22

Chapter 2 – Fundamentals of Linux Rev 50

created new programs to perform that function. Now, you are able to call on the
multitude of various programs to do virtually any task you need – or create a new
one if you deem appropriate.

A basic philosophy of the Unix concept is to create an application that does
one thing – and does it very well. Multiple commands may then be coupled
together to perform a more complex task. This concept of simplicity and
coupling of commands is not available in Microsoft Windows.

2.3 System Administration
An individual that maintains a network is considered a network

administrator. You are not necessarily the system manager, but you do have
duties, which entail the maintenance of the system and its users.

As such, you have immense responsibilities. The level of such may be
dependent upon factors such as:

➢ Expertise
➢ Seniority
➢ Organization size

Tasks, which you may be required to perform, include:
➢ Creating user accounts
➢ Hardware maintenance
➢ Software installation and upgrades
➢ End user training
➢ Network backup
➢ Network optimization
➢ Network Documentation
➢ Establishing and maintaining procedures and policies
➢ Establishing and maintaining network security and privacy
➢ Emergency recovery
➢ Planning network growth
➢ Insuring management is aware of system status, growth and

operating requirements
➢ Maintaining an up to date knowledge of the industry and technical

trends
➢ Working knowledge of multiple operating systems (Windows,

NetWare, Unix, Linux …)
➢ Maintaining security updates
➢ And other as may be deemed appropriate and necessary

An important part of being a system administrator is that of maintaining a high
ethical value. One deals with and has control of a companies computer system
– and all of the data and users that reside and utilize. You are responsibility can
lead to both the downfall of a user and of a company.

Since a system administrator, when logged on as the network administrator
(root) has network privileges that give unrestricted access to information and
operation. One has the ability to:

HLUL02
© Dennis Rice

6 / 22

Chapter 2 – Fundamentals of Linux Rev 50

➢ Read the e-mail of various users and their system files
➢ Read and alter company or personal files
➢ Issue messages as another user.
➢ Erase system files
➢ Delaying maintenance to the system
➢ Minimizing assistance at the help desk
➢ Allowing security measures to become lacks

Doing any of the above must be considered of the highest unethical actions.
Breaching the trust of you by either the users or the company may be grounds
for immediate dismissal. Also, divulging information obtained while on the job to
anyone without authority is a FEDERAL CRIME!

A system and administrator should be open to the system’s operation and
setup, within limits of system security and individual’s privacy. One should not
design a system that others are incapable of figuring out – just to insure “they
can’t fire me” (don’t worry, they will find a way!).

Remember the following:
➢ Excellent jobs are always available to the administrator that:

— is well trained
— is technically competent
— works to assist others
— maintains a reputation for high ethics
— endeavors to expand your continual growth in education

➢ Never rely on “job security” – there is nothing of the sort

For more information as a system administrator, one should visit the System
Administrators Guild (SAGE at http://www.usenix.org/sage/ . This site
contains information regarding:

➢ Job and salary profiles
➢ Local user groups
➢ Technical information
➢ Events and conferences

2.4 User Interface
After your system has been installed and is operational, you now have to use

it. This requires that you input information to the operating system. There are
two means by which we can communicate with the OS.

2.4.1 CLI Mode
The Command Line Interface Mode allows the user to directly type in

commands to the operating system. This input is normally referred to as the
“Stdin” – or Standard Input, more commonly known as the keyboard. The
normal output or response from the command is directed to the user’s monitor,
normally referred to as the “Stdout” – or Standard Output. In the CLI Mode, the
computer performs an action directly in response to a command that the user
has initiated. In general, the CLI mode does not provide fancy graphics, but

HLUL02
© Dennis Rice

7 / 22

Chapter 2 – Fundamentals of Linux Rev 50

some programs may provide simple graphic designs to improve the user
functionality. Not all programs or application commands require an output to the
monitor, they just do their thing and return the prompt. For example, if you direct
the system to copy a file to another location, it performs the action and returns
the user prompt.

2.4.2 GUI Mode
Two common options are typically available to the user when utilizing a

Graphical User Interface (GUI). They are KDE and GNOME. Others are also
available, but will not be utilized during this instruction format. In general, both
KDE and GNOME appear to be similar and both work in a similar manner, but
each have their own strengths. For these set of exercises, either will work just
fine. If working in the GUI mode, you will observe a small monitor at the bottom
of the screen; this starts a terminal mode (XTerm), where the CLI commands
may be typed in. Later versions of Red Hat and other distributions may not
include the icon, but it may be accessed via either the GNOME or KDE button.

KDE has a big K in the bottom left corner, whereas GNOME has a big foot.
As a matter of routine, the K for the KDE screen is referred to, but they are to be
considered equivalent for the exercises. If you are using GNOME instead of
KDE, the instructions will be generally the same. In later versions of Red Hat
and Fedora, you may observe a “Red Hat”.

2.5 Command Line Interface
How does a computer work? You may have previously learned that it

functions on binary signals, but you need to understand that those bits actually
represent commands. Today’s computers utilize commands that are 16 to 32
bits long, and may be augmented with additional information such as an
address.

These commands were developed into a language called Assembler. A
command comprises one or more bytes, called a word. Because one is able to
work at the level of the processor, the most efficient coding of programs may be
achieved – but the cost is a very intimate knowledge of a given processor.
Commands for one processor are not necessarily transferable to a different
processor.

Now we have the problem of converting what you type on the keyboard to
something that the computer can understand. For instance, if you wish to
display the contents of a file, different operating system commands might be:

DOS: type filename
Unix / Linux: less filename
MS Windows: notepad filename (in an editing mode)

In order to put this into a machine language that the computer can
understand, we must utilize an interpreter. When we utilize the keyboard, we
use a Command Line Interpreter called a shell. In like manner when using a GUI
(windows) interface, we need an interpreter that can recognize the position and
button clicks of a mouse and convert that information into a machine command.
Coding to create a GUI interpreter is considerably more complex than that of a

HLUL02
© Dennis Rice

8 / 22

Chapter 2 – Fundamentals of Linux Rev 50

Command Line Interpreter (CLI). The program that is used to interpret our typing
and convert it into a machine language command is called a shell.

When using either Unix or Linux, there are several shells available. Today
the most common is called BASH, or Bourne Again Shell. This is an
improvement over the previous shell, called the Bourne Shell (or just Shell). For
various reasons, different shells have been developed that have specialized
attributes, making the performance of a user easier. Common shells that exist
include:

sh Bourne shell
bash Bourne again shell
tcsh t Shell
csh c Shell
pdksh Public Domain Korn Shell
zsh z Shell
ash a Shell

Each of these reside in the /bin/ directory. bash is one of the most popular,
as it is able to support a vast number of general requirements, and is an
enhancement of the Bourne shell. Sometimes it is better to have a specialized
shell that will make data input easier, such a shell is the c shell, which was
developed specifically for those working in the C programming language. Bash
is the default shell in Red Hat (and most other Linux systems) that is set upon
each new user under Linux, but the administrator may modify this if desired. The
Bourne shell (sh) was originally developed by AT&T for Unix in the late 1960’s.
The user is able to switch between the different shells by simply keying in the
shell mnemonic (e.g. csh).

2.5.1 DOS vs. Unix / Linux 1

A few of you may have grown up or learned the original Microsoft Operating
System, DOS. DOS was created long after Unix was a well established
operating system in the operating world. There are many similarities between
the two systems in their basic command structure. Table 2.1, MS-Dos verse
Unix / Linux is a list of the most fundamental commands:

1 Official Red Hat Linux User’s Guide, Wiley Publishing

HLUL02
© Dennis Rice

9 / 22

Chapter 2 – Fundamentals of Linux Rev 50

Table 2.1: MS-DOS vs. Unix / Linux Commands
MS-DOS Unix /Linux Command Function
copy cp Copies a file to a new name or location
move mv Moves a file
dir ls List a directory’s contents
cls clear Clear screen
exit exit Exit from present application
date date Display or modify the date and / or time
del rm Delete or remove a files
echo echo Displays the specified message to the screen
edit pico / vi Basic text editor
fc diff Compare contents of a file
find grep Search for a text string in a file
format a: mformat Format a floppy disk in DOS FAT format
command
?

man command /
info command

Display command syntax and options

mkdir mkdir Create a new directory
more more / less / cat Displays the contents of a file
ren mv Renames a file or directory
chdir pwd Displays the Path to the Working Directory
cd
pathname

cd pathname Changes to the designated directory

cd . . cd . . Changes to the parent directory of the present
directory

time date Displays the time and date of the system clock (not
hardware clock)

mem free Displays amount of available and utilized RAM

2.6 Graphical User Interface
After all of the discussion about learning and using a command shell, many

users are just turned off by having to learn “all that stuff”. In today’s society, it is
much easier to see an object, comprehend what it is suppose to do, and then
click on it. Linux supports the Graphical User Interface (GUI) for common
applications. The benefit of the Linux GUI is that there are several versions that
the user may choose from. Choices range in look and feel to application section.
Because this is a significant topic of its own, a whole chapter is dedicated to the
X Windows system.

Be aware that any Windows system (Microsoft or Unix) does not have the
power to manipulate data like you have in the Command Line Interface. Data is
best manipulated at the command line using command utilities that provide the
user with the ability to modify data and the ability to perform tasks that are
impossible to perform using Microsoft without extensive programming.

2.7 Pathnames and Directories
A Directory is a symbolic area of the storage media that contains files and

additional directories. Although the files and subdirectories may be randomly
distributed across the media, one may view the media, normally a partition on a
hard drive as a file cabinet.

HLUL02
© Dennis Rice

10 / 22

Chapter 2 – Fundamentals of Linux Rev 50

The first level of directories is like the cabinet drawers. These contain
additional documents and directories, which in turn may contain more
documents and directories. For our discussion, from your experience from the
MS Windows world, a folder and directory are the same thing. The depth of the
directories is normally only limited to the user requirements.

We specify the location of a file by giving its full path, or the names of all
directories that are required to navigate to the file – kind of like a road map. The
directory names are separated by the forward slash (/).

When we designate the full path, we then specify the “Fully Qualified
Filename”. It is also called an absolute pathname. An absolute pathname is
one that starts at the very top of the directory structure and specifies each
directory. The first character is written with the forward slash / .

Relative Paths designate a file’s location relative to one’s present location,
without specifying one’s current directory. The relative path must always be a
subdirectory set with respect to the current location, and does not include the
forward slash.

A directory location directly below a specified directory is said to be a Child
Directory. The reference directory is the Parent Directory of the child.

From wherever one is, the Absolute Path will take one to the designed
location; if one is in the parent directory, then only the child directory name,
without the slash (/) and the rest of the directory names. Examples are:

Absolute Path /etc/sysconfig/network-scripts
Relative Path (starting in /etc) sysconfig/network-scripts

There are two shortcuts that may be utilized to specify a file’s location. They
are:

. The current working directory – it contains the contents of the
present directory.

.. The parent directory – it contains the path to the directory
immediately above the present directory.

It is often necessary to specify a file’s current location relative to our present
location – even if it is located in our present location. This is shown as:

$ command ./filename

This states that the desired command is to perform it operation on the file
“filename”, which resides in the current directory. Normally, this specific process
is not required, but if a command or script is issued from the directory that one is
currently located in, then one does require the “./” preceding the command.

$./command

The most common example is the running of a script that has been written in
bash, perl, python, or one of the other scripting languages. These applications
typically do not reside in the standard environmental $PATH of the user.

HLUL02
© Dennis Rice

11 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.8 File Storage
So far the discussion has been about how to navigate around the file system,

but the question should also be, how does Unix / Linux keep track of where a file
is located?

When using Microsoft, files are tracked using a File Access Table, more
commonly known as the FAT table. This specifies where on a hard drive the
desired file is located. Microsoft also writes data to the next available spot on the
drive, and hence if the space is not large enough, the file will be spread across
multiple sectors. This results in the file becoming fragmented, and the need to
defragment the hard drive on a periodic basis. Unix and Linux do not write data
to the hard drive device in the same way, rather than finding the first available
sector, the system looks for the first available block of space that is large enough
to hold all of the file. Thus, the file is stored on the drive in a contiguous manner.
If the data was previously stored on the drive in a different location, that space is
freed up for use by another process. It is not a requirement to defragment a
hard drive unless the drive becomes more than 90% full, at which time it is
necessary to add a new drive.

The next question is how does Unix / Linux keep track of the file's location?
This process is known as inode, or index node table. A table is maintained on
the hard drive, and written to memory on bootup to enhance speed, which
specifies the files location. This table includes information such as:

Inode Value
File Type
Links
Access Permissions
User (Owner) ID
Group ID
Date Created
Date Last Modified
Date Changed
Size
Blocks
Storage Device ID
Block ID (Track, Sector, Cluster)
. . .

Thus, when the system requires access to a file, it looks up the inode, then
goes to the physical location, where it reads the data. This method of storing
data is very efficient in speed and overall operation, although it might not be
optimum utilization of the disk space.

2.9 Filenames
DOS and VMS use filenames that have only one extension – such as .com,

.exe, .mp3, .doc, .bmp and many others. Unix and Linux do not care, the dot
character (.) is just part of the filename with no special significance. Thus you
can have a file name such as “mine.yours.ours”. For our ease in viewing files,
we commonly assign a “standard” extension to a file name, so that we can easily
interpret what type of file it is, but to Unix and Linux, it does not matter. The type

HLUL02
© Dennis Rice

12 / 22

Chapter 2 – Fundamentals of Linux Rev 50

of file that the code is is represented by the first several bytes of the code. We
will learn more in another chapter about this.

Filenames that begin with a dot are classed as hidden. Thus they are not
normally viewed when doing a directory listing. This does not mean you can not
see the files, just that you must use a special command to see them.

There are a few requirements for the creation of a filename:
1. First character should not be a hyphen (–) .
2. The characters ?, *, &, (,), [,], <, >, “space”, and “tab” should

not be included in the file name, as they have special command
line meaning.

3. If you need one of the special characters in a filename, enclose the
filename in double quotes (“ ”).

4. Do not use non-printing ASCII characters. (These are no-see-ems
;-)

5. A system is normally configured to support the ASCII code for
character display, but may be configured to support different
characters of foreign languages or even Unicode (16 bits /
character).

6. Filename must be unique. If you create a new file with a name that
is the same as that of an existing file (where it will be stored), the
original existing file will be overwritten.

2.10 Definition of Root
There are many things that are confusing about Unix and Linux – and at the

top of the list is the term root. In fact, it has four different meanings, so one has
to listen carefully when someone uses the root word, to make sure that you
understand the proper context.

The four different meanings of root are:

2.10.1 The root
The directory system is a tree structure. The top of the structure is referred

to as the root. The root is also sometimes referred to as to as the Top Level
Directory (TLD). To help distinguish this from the other meanings, it might be a
good practice to use the word “the” in front of it – thus “the root”.

2.10.2 Administrator root
This is the administrator of the system. This is the administrator’s username.

As administrator, you have total power over the system operation and
configuration. You can go anywhere you want, create anything you want, and
erase to do anything you want. That includes the whole system. But once a file
is erased, it is GONE! There is no recovery, so be very careful. Other users
may also be assigned the status of root, even though they have a different
username – this can be both good and bad. Under your normal username you
can set yourself to have total root privileges – which security wise is a very bad
idea. Be very cautious about who you hand out the root privilege to.

HLUL02
© Dennis Rice

13 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.10.3 Home Directory /root
This is the administrator’s home directory. It is located directly below the root

directory, and allows the administrator additional privileges above any other user.
Access to this directory is restricted to the root administrator, no one else may
even read its contents. Special privileged files are maintained in this directory.

2.10.4 Group root
In addition to the user called root, there is a group called root. They are not

the same entity. A group is made up of other users and groups. Various other
users may be added as members to the group root, but this should be done with
caution.

For every user on the system, there is a group by the same name.
Additionally, we can have additional groups that we can create separately. The
process of creating groups and assigning users to it will be discussed in a later
lab.

For now, there is a specific group called root, which has certain extended
privileges. To the extent that you the administrator desire, you may assign rights
for a member of the group root. What is very important is that the user root and
the group root have many more privileges than the normal user – you must
exercise caution when handing out these rights. This might be to allow them to
access certain directories that the other users are not allowed, or to execute a
specific set of commands. To assign another user the rights to the group root,
you need to add them to the group (again, the process is covered later).

2.11 Home Directory
Every user on a Unix / Linux system has their own private directory, referred

to as the home directory. This is where their personal configuration and data
files are maintained. All users, except the administrator, have their home
directory located in the /home directory. When a user first logs onto a system,
they are automatically opened to their home directory, thus when user jdoe logs
on, he will be in the directory /home/jdoe.

The only users allowed into an individual’s home directory are the specified
user and the administrator.

The administrator also has a home directory, but it is located the /root
directory. Only the administrator is permitted to access it.

When the user first logs onto a system, they are immediately placed into their
home directory. For a normal user, the prompt that appears will typically be a
“$”, whereas the root administrator will have a “#”.

2.12 Password Security
Password security is of prime importance to any system. This is your first line

of defense to an unauthorized user attempting to gain access to your system.
Originally, Unix used the DES to encrypt passwords, and maintained them in a
file called “/etc/passwd”. Passwords were limited to 8 characters. Today, most
Linux systems default to a newer encryption method called MD5, which allows a
password of up to 256 characters – try remembering one that long. Additionally,

HLUL02
© Dennis Rice

14 / 22

Chapter 2 – Fundamentals of Linux Rev 50

to further enhance security, the actual encrypted password was removed from
the passwd file and transferred to a new file called “/etc/shadow”. This added
not only a more secure placement of the password, but added the feature of
password aging. An installation does not require the creation of the shadow file
for older distributions – this is not a normal process. A system should typically
be set up with the shadow file. The newer Fedora Core distribution does not
allow the option to not create the shadow file, it is automatically created.

Although in a classroom environment you may be instructed what password
to use, this must be emphasized as not the normal routine. In a normal
operating system, your personal password must be kept private – do not give it
out to anyone.

2.13 Shell Interpreters
When we are at the Command Line Interface (CLI), we use a Shell that

interprets our keystrokes, converting them into appropriate bits that the kernel
can execute. Several different shells exist that make this process easier for us.

The CLI is indicated by a prompt. In general as a normal user, when you are
using the bash shell in Linux, your prompt will appear as:

[username@hostname present-directory] $

This specifies that your username on the host is presently at a specified
directory. If it ends in a “#”, then you are the root administrator, otherwise you
will see a “$”, which indicates you are a normal user. From this you are able to
enter various commands. The root’s prompt will be (although this will vary by
distribution):

[root@hostname present-directory] #

The original shell was developed by Bourne for the Unix system back in the
early 1970’s. Since then others have developed alternatives. This may seem
unnecessary, but in another perspective, this is one of the powers of the Unix /
Linux concept – you can develop system controls that benefit you and are not
dictated to by a single vendor.

Other common shells include the sh “shell”, korn shell, tsh shell, csh shell, tsh
shell, zsh shell, and the bash shell. Today, the bash shell is the default for new
users.

There are pros and cons to each which may be argued by those who use
them. A few comments on some include:

sh and korn Some of the original shells that provide basic
functions.

csh A shell that supports the development of C Language
program code.

bash A shell that has been updated from the original sh and korn
shell. By default, this is the shell that Linux and most other
systems operate in.

Using the usermod command, one can change the default shell, this will be
investigated in depth later.

HLUL02
© Dennis Rice

15 / 22

mailto:username@hostname

Chapter 2 – Fundamentals of Linux Rev 50

Although the other shells have been developed, it is left to the user to
investigate them and evaluate if they desire to utilize a shell other than bash.
Bash will provide you better than 99 % of all of your requirements.

Common features of Bash include:
➢ Multi commands per line, separated by a semicolon (;)
➢ Command Execution
➢ [] Matching of possible characters in a filename
➢ | Support of the pipe command
➢ & Execute command in the background
➢ * Wildcard, match on any set of characters in filename
➢ ? Wildcard, match on any single character in filename
➢ > Redirect standard output to a file, overwriting file or creating

a
new file

➢ >! Forces the overwriting of the file
➢ < Redirect standard input from a file or device to a program
➢ >> Redirect standard output and append to specified file
➢ 2> Redirect standard error to a file
➢ 2>> Redirect and append stand error codes to a file
➢ 2>&1 Redirect the standard error code to the standard output
➢ >& Redirect the standard error to a file or device
➢ |& Pipe the standard error as an input to another command
➢ ! Called the “Bang”
➢ #! Called the “SheBang”, used in scripts to indicate which

script
program (Bash, Perl, Python, …) to use

➢ TAB Use to complete the typing of a filename
➢ \ Called the “whack”, used to continue code, comment on the

next
line, or to escape out of the present text mode and issue a

special
character within an echo command.

➢ # , , Pound Sign or Hash used to specify a comment
➢ ; , Semicolon alternative to commenting out a line of code

Bash also supports the creation and execution of scripts. Using the above
symbols and various commands, one may write programs to perform various
executions in a batch format. Creating script files will be covered in a later lab.

Some of the shell Command Line Interpreters are:
1. Bash (Bourne Again Shell)
2. Korn
3. Csh
4. Sh (Bourne)
5. Tsh
6. Zsh
7. Ash

HLUL02
© Dennis Rice

16 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.13.1 Shell Comparison
The following table provides a comparison between several of the available

shells.

Table 2.2: Shell Comparison
Bourne Again

Shell
(bash)

Borne
Shell
(sh)

C
Shell
(csh)

Korn
Shell
(ksh)

Command
history Yes No Yes Yes

Command
Alias Yes No Yes Yes

Scripting Yes Yes Yes Yes
File Name
Completion Yes No Yes Yes

Command
Line Editing Yes No Yes Yes

Job Control Yes No Yes Yes
Programming

Features Most Few Minimal Many

User Friendly Very High Basic Low

2.14 Client – Server Concept
Many local networks (LANs) are typically built around the concept of

everyone running their own system, sharing directories with appropriate
information as desired. This is called a peer-to-peer network.

An alternative is to set up a server to maintain the client information. User’s
wishing to access the data must log onto the server in order to access or modify
the information. This is referred to as a Client – Server Network.

The advantage of a Client – Server network is the centralization of data –
hence everyone is working off of the same base. Typically when a user has
opened a data file, it is locked so that another user may not open the file, thus
preserving its integrity.

2.15 Commands Used in this Chapter
No commands were utilized in this chapter.

HLUL02
© Dennis Rice

17 / 22

Chapter 2 – Fundamentals of Linux Rev 50

2.16 Chapter Review Questions
1. Unix and Linux interface all devices as what?

a. Directories
b. Files
c. Devices
d. Terminals

2. What is the central software core called?
a. Operating System
b. Shell
c. Kernel
d. Major

3. What software interprets user keystrokes into code for the Kernel?
a. Terminal
b. Bash
c. Korn
d. Shell

4. The network administrator is responsible for which specific network
tasks?
a. Bootup
b. Optimization
c. Documentation
d. All of the above

5. If the network administrator divulges information of another user or
of the corporation it is considered what?
a. Federal Crime
b. Fraud
c. Open Source
d. Espionage

6. What mode accepts input from the stdin?
a. Command Line
b. Graphical Interface
c. Mouse
d. Keyboard

7. What does bash stand for?
a. Bourne Shell
b. Beginning Shell
c. Beginning Shell
d. Bourne Again Shell

8. A fully qualified filename specifies what?
a. File’s Location
b. File’s Path
c. Full pathname and file to a file’s location
d. File’s Directory

9. What is the filename that contains the contents of a directory?
a. pwd
b. “.”
c. “..”
d. dir

HLUL02
© Dennis Rice

18 / 22

Chapter 2 – Fundamentals of Linux Rev 50

10. How would a user commonly specify a filename that is in their
present directory?
a. ls
b. “.”
c. filename
d. ./filename

11. What characters should not be used in a filename?
a. ?, *, &, (,), [,], <, >, “space”, and “tab”
b. “space”, “tab”
c. -, +, =, ^, %
d. !, @, #, &

12. What is meant by “the root”?
a. Top of the directory structure
b. Administrator’s Home directory
c. The Administrator’s login name
d. A Group of users with administrative rights

13. What is meant by the term “root administrator”?
a. Top of the directory structure
b. Administrator’s Home directory
c. The Administrator’s login name
d. A Group of users with administrative rights

14. Specify the fully qualified path to the administrator’s home
directory.
a. root
b. /root
c. /home/root
d. /home

15. What entity may be assigned some rights of the administrator?
a. root
b. /root
c. /group
d. group root

16. What is the home directory of the user jdoe?
a. /root
b. root
c. /home
d. /home/jdoe

17. The user jdoe logs onto a system, what is their prompt under bash?
a. [jdoe@hostname /home/jdoe]$
b. [jdoe jdoe]$
c. [jdoe@hostname jdoe]#
d. [jdoe@hostname jdoe]$

18. Using MD5 password encryption, how long may the password be?
a. 8 characters
b. 16 characters
c. 64 characters
d. 256 characters

HLUL02
© Dennis Rice

19 / 22

Chapter 2 – Fundamentals of Linux Rev 50

19. What feature of bash directs execution of a program in the
background?
a. @
b. *
c. &
d. =

20. What is the “ > ” character?
a. Appends output to Null
b. Appends output to a new file
c. Sends output to a new file
d. Sends output to the Null file

21. What is the “ >> ” character?
a. Appends output to Null
b. Appends output to a new file
c. Sends output to a file
d. Sends output to the Null file

22. What is the “ ! ” character called?
a. bang
b. gong
c. sha-bang
d. bing

23. What is the “ #! ” character called?
a. bang
b. gong
c. sha-bang
d. bing

24. What does the TAB key do to a filename?
a. Advances the cursor 8 characters
b. Advances the cursor to the next tab location
c. Completes the pathname of the file
d. Completes the filename characters

25. What character is used to continue a comment or code on the
following line?
a. #
b. ;
c. &
d. \

HLUL02
© Dennis Rice

20 / 22

Chapter 2 – Fundamentals of Linux Rev 50

Chapter Index
A

a Shell 9
Absolute

Pathname 11
Absolute Pathname 11
Administrator

Privileges 7
Responsibilities 6
Tasks 6
Unethical Actions 7

Administrator root 13
Applications 5
Assembler 8

B
Bang 16
bash 9
Bash 5
Bash Features 16
Bourne Again Shell 5, 9
Bourne Shell 9

C
c Shell 9
Character

; 16
16

Child Directory 11
CLI Mode 7
Client – Server Concept 17
Command

usermod 15
Command Line Interface 8, 10
Command Line Interpreter 9
current working directory 11

D
Definition of Root 13
defragment 12
Device Drivers 3
Directory 10

. 11

. . 11
/bin 9
/home/username 14
/root 14

DOS vs. Linux Commands 10
DOS vs. Unix / Linux 9

F
FAT 12
File

Relative Location 11
/etc/fstab 3
/etc/mtab 3
/etc/passwd 14
/etc/shadow 15

File Access Table (FAT) 12
File Operating System 3
Filenames 12
Files

Hidden 13
Naming Criteria 13

Folder 11
Forward Slash 11
Fully Qualified Filename 11

G
Graphical User Interface 10
Group root 14
GUI 5, 10
GUI Mode 8

H
Hardware 4
Home Directory 14
Home Directory /root 14

I
Internal Commands 5
Interpreter 8

K
KDE 8
Kernel 5
Kernel Hardware Interface 5

M
MD5 14

N
Network

Client-Server 17
P

parent directory 11
Password Security 14
Path

Absolute 11
Pathnames and Directories 10
Peer-to-Peer Network 17

HLUL02
© Dennis Rice

21 / 22

Chapter 2 – Fundamentals of Linux Rev 50

Prompt
15
$ 15

Public Domain Korn Shell 9
R

Redirector 4
Relative

Pathname 11
Relative Path 11

S
SAGE 7
Shebang 16
Shell

Relative Path 11
sh 9, 15

Shell Comparison 17
Shell Interface 5
Shell Interpreters 15
Standard

Error 4
Input 4, 7
Output 4, 7

Standard Input / Output 4

Stdin 7p.
Stdout 7
System Administration 6

T
t Shell 9
The root 13
The Linux Kernel 4
Top Level Directory 13

U
User Interface 7

W
whack 16

X
XTerm 8

Z
z Shell 9

;
; 16

/
/home

Directory 14
#

16

HLUL02
© Dennis Rice

22 / 22

	Fundamentals of Linux
	2.1	File Operating System
	2.1.1	Device Drivers
	2.1.2	Standard Input and Output

	2.2	The Linux Kernel
	2.2.1	Hardware
	2.2.2	Kernel
	2.2.3	Shell Interface
	2.2.4	Applications

	2.3	System Administration
	2.4	User Interface
	2.4.1	CLI Mode
	2.4.2	GUI Mode

	2.5	Command Line Interface
	2.5.1	DOS vs. Unix / Linux 1

	2.6	Graphical User Interface
	2.7	Pathnames and Directories
	2.8	File Storage
	2.9	Filenames
	2.10	Definition of Root
	2.10.1	The root
	2.10.2	Administrator root
	2.10.3	Home Directory /root
	2.10.4	Group root

	2.11	Home Directory
	2.12	Password Security
	2.13	Shell Interpreters
	2.13.1	Shell Comparison

	2.14	Client – Server Concept
	2.15	Commands Used in this Chapter
	2.16	Chapter Review Questions

