
Chapter 9 – Data Manipulation Rev 54

Chapter 9

Data Manipulation

This chapter introduces the user to the many of the commands that are available
to work with and analyze data. The list is not complete – and should never be,
as new commands are developed. After an introduction, the user will
understand more of what commands are available to use directly, in scripts, and
enhanced editors such as awk (gawk) and sed.

There are many commands noted in this chapter that might seem obsolete. That
may very well be true, but it also demonstrates the heritage of the operating
system. Learn to see where these commands might be useful.

Concepts Learned in this Chapter
➢ Utilities designed to manipulate data and information, thus

providing a productive system

HLUL09
© Dennis Rice

1 / 60

Chapter 9 – Data Manipulation Rev 54

Table of Contents
Data Manipulation... 1

9.1 Displaying a Message to the Monitor ... 4
9.2 Sorting a File .. 5
9.3 Comparing File Contents ... 5
9.4 Differences Between Two Files .. 6
9.5 Counting Words, Lines, and Characters .. 7
9.6 Extracting Data from a File ... 7
9.7 Combining Files Together .. 8
9.8 Displaying and Setting the System Date .. 9

9.8.1 Displaying a Date ... 9
9.8.2 Setting the Time and Date .. 9

9.9 Displaying a Calendar .. 10
9.10 Comparing Left and Right Files .. 10
9.11 User Dictionary Utilities ... 12

9.11.1 look..12
9.11.2 spell ...12
9.11.3 ispell ... 13

9.12 Multiple Outputs from a Command... 13
9.12.1 tee Utility... 13
9.12.2 Logging a Session’s Commands..14

9.13 Batched Commands... 14
9.14 Changing GroupID ... 15
9.15 File Verification .. 15

9.15.1 cksum...15
9.15.2 md5sum... 16
9.15.3 sha1sum... 16

9.16 Column Manipulation.. 17
9.16.1 Creating Columns from Data ..17
9.16.2 Removing Columns from Data ..17

9.17 Controlling a ZIP Drive ... 18
9.18 Converting Tabs to Spaces ... 18
9.19 Converting a Text File to Postscript ... 19
9.20 Displaying the Last N Issued Commands ... 19
9.21 Group Password ... 20
9.22 Learning the Login Name .. 21
9.23 Listing Directory Contents with DIR ... 21
9.24 Logging in as Another User ... 21
9.25 Merging 3 Files .. 21
9.26 Detecting Mouse Clicks ... 22
9.27 Modifying a Command’s Priority .. 23
9.28 Numbering the Lines of a File ... 23
9.29 Format a File for Printing ... 24
9.31 Prime Factors of a Number ... 26
9.32 Reversing Text Output .. 26
9.33 Displaying a Sequence of Numbers .. 27

HLUL09
© Dennis Rice

2 / 60

Chapter 9 – Data Manipulation Rev 54

9.34 Serial Port Statistics .. 27
9.35 Splitting a File .. 28

9.35.1 Splitting a File by Pattern.. 28
9.35.2 Spitting a File by Length... 30

9.36 Terminal Connectivity .. 31
9.37 Testing a Condition ... 31
9.38 TIFF Image Information ... 33

9.38.1 TIFF Information... 33
9.38.2 TIFFDUMP... 33

9.39 Utility Time .. 34
9.40 Wordwrapping Text .. 34
9.41 Determining the User ID.. 34
9.42 User Identity Information .. 35
9.43 History of Past Commands... 36

9.43.1 Listing the Previous Commands using history.. 36
9.43.2 Listing Previous Commands using fc...36
9.43.3 Completing a Filename using the TAB Key..36

9.44 Unattended Jobs using at.. 37
9.45 Unattended Periodic Jobs using cron .. 38
9.46 Creating Your Own Command.. 41
9.47 Obtaining File Information... 42
9.48 File Types .. 42

9.48.1 Normal Files .. 42
9.48.2 Block Devices ..42
9.48.3 Listing Block Devices Attributes .. 43

9.49 Midnight Commander.. 43
9.50 DOS Mtools.. 44

9.50.1 mcopy Utility...44
9.50.2 mdir Utility.. 45
9.50.3 mtype Utility..45

9.51 Compression Techniques (Not Complete)... 46
9.51.1 compress / uncompress:...46
9.51.2 gzip / gunzip:... 46
9.51.3 zip / unzip:... 46
9.51.4 bzip2.. 47
9.54.1 tar Example..47

9.53 Quotation Marks (Not Complete) ... 49
9.54 Suspend Execution... 49
9.55 System Uptime.. 50
9.56 Commands Used in this Chapter.. 50
9.57 Chapter Review Questions.. 52

HLUL09
© Dennis Rice

3 / 60

Chapter 9 – Data Manipulation Rev 54

There are many applications that are available to the Unix and Linux user.
The design concept of each command is – Do one thing and do it well. Thus
over the years, many small powerful utilities have been developed to manipulate
data. This is an introduction to just a limited number of the commands available
– and a few are fun, but someone else needs to explain their justification.

9.1 Displaying a Message to the Monitor
The Echo Utility is designed to report to the stdout (screen) what is typed in –

but it has capabilities well beyond that. In general, it is one of the most useful
commands available for displaying information on the screen.

Echo takes the arguments that follow the command and issues them as just a
character string. If you should place another command after the echo utility, the
response will be to print out the command characters, but not enact the
command. For example:

$ echo ls
displays

ls
– and nothing happens.

You can place a system variable as an argument to echo, such as:
$ echo $USER

your response will be
your-username

All of the environmental variables may be displayed using the echo
command.

If you need to output the literal text of a variable, then you enclose the text in
either single “forward” quotes or double quotes. For example:

$ echo ‘$USER’ or
$ echo “$USER”

and you will observe
$USER

If you need to output another command in the middle of a text string, then
you need to put the command in between BACKTICs. This is the character that
looks like a single quote to the left of the numeric 1 key. For example:

$ echo ‘$PATH’ variable is “$PATH” notice the different type of
quote characters

So what is the value of the echo command? Being issued at the keyboard –
nothing! But what if you are writing a script, and you need to instruct the user to
perform an action, such as changing the CD it becomes a very powerful
command. This command is particularly useful when writing scripts.

HLUL09
© Dennis Rice

4 / 60

Chapter 9 – Data Manipulation Rev 54

9.2 Sorting a File
The sort utility provides a function of just what the name is – it sorts a list of

items and reorganized them into a sorted list.
Sort takes as its input a file with a content list. This file is then sorted and

displayed on the screen. Several options are available.
Options include:

-o Output the sorted list to a file.
-r Create a reverse order sorted list.
-d Create a sorted list based on the dictionary listing, consider only

blanks and alphanumeric characters.
-u Suppresses identical lines in the original file.
Additional options exist.

The following is an example of a list of names (Original), and the output of
several different sorted formats (straight, dictionary, and reverse).

Names namesaz namesd namesza
Original sort sort -d sort -r
Robert alan alan william
Joe bill bill thomas
dennis dennis dennis steven
mike Dennis Dennis sean
william janett janett Robert
sean joe joe robert
alan Joe Joe mike
steven julie julie kevin
kevin kevin kevin julie
julie mike mike Joe
janett robert robert joe
robert Robert Robert janett
thomas sean sean Dennis
bill steven steven dennis
joe thomas thomas bill
Dennis william william alan

The sort utility may also be used to append two files, with the output sorted.

9.3 Comparing File Contents
The cmp (compare) is used to compare two files, then listing the difference

between the two by character position and line.
The syntax for the cmp command is:

$ cmp file1 file2

The output specifies the where the first byte and line error exists, rather than
the differences. Only the first difference is reported.

Two options are available, –l and –s. The “l” option specifies that the
difference in the files be outputted in a hex format, the “s” option specifies that
HLUL09
© Dennis Rice

5 / 60

Chapter 9 – Data Manipulation Rev 54

no output be given, but that the results are returned as an error message with a
0 if there is no difference, or 1 if there is a difference. The “s” option would be
used in a script when you wish to test the results, and then take action
accordingly.

cmp names namesaz
names namesaz differ: byte 1, line 1

9.4 Differences Between Two Files
The diff (difference) utility is used to determine differences between files or

directories. Although it may produce similar results to the cmp utility, it operates
in a different way. The cmp compares two files character by character, whereas
the diff utility compares line by line. The cmp utility is most useful for comparing
binary files rather than text files.

The syntax for diff is:
$ diff file1 file2

There are three options for this utility:
-i Ignore differences in case
-q Provides a summary of information, only if they do differ.
-b Ignore changes in whitespace.

diff names namesaz
1,2c1,2
< Robert
< Joe

> alan
> bill
3a4,9
> Dennis
> janett
> joe
> Joe
> julie
> kevin
5c11,12
< william

> robert
> Robert
7d13
< alan
9,12d14
< kevin
< julie
< janett

HLUL09
© Dennis Rice

6 / 60

Chapter 9 – Data Manipulation Rev 54

< robert
14,16c16
< bill
< joe
< Dennis

> william

To fully utilize the full capability of this command, study the man page to
learn all of the options.

9.5 Counting Words, Lines, and Characters
The wc (word count) utility provides a count of characters, lines, and words

of a file. All three may be printed out, or one at a time.
Syntax for the wc command is:

$ wc filename

Options for only one output are:
-l Prints the number of lines in the file.
-c Prints the number of characters in the file.
-w Prints the number of words in the file.

If only the wc command is used without options, then the response will be of
the format:

wc names
16 16 97 names

In this example, the file names has 16 lines with 16 words and 97 characters.

9.6 Extracting Data from a File
The utility cut allows us to extract a tab delimited character range or fields

from a file. Using this we can output selected parts of lines from a file to the
monitor.

The syntax is:
$ cut –{option} filename

where option include:
b byte range -b10-20
c character range -c25-50
d specify delimiter character -d:

(must follow -f option)
f tab delimited field range -f5-8

(tab is the default delimiting character)
s ignore lines that do not contain the tab character to delimit the
fields

HLUL09
© Dennis Rice

7 / 60

Chapter 9 – Data Manipulation Rev 54

The range value may be a single value, from a value to the end of the line, or
between two values. Additionally, multiple ranges may be specified, when
comma delimited. For example:

-b10-20 outputs the character numbers 10 through 20
-b10,20 outputs the character numbers 10 and 20
-b10- outputs the character number 10 to the end of the line
-b10-20,30-40 outputs two byte ranges, note no space between
ranges
-c25-50,60-80 outputs two character ranges, note no spaces

between ranges

As an example, we can use the /etc/password file extract data from. Only a
portion of the list is shown.

-c1-10 -f1-2 -d: -f1,4-5 -d:
xfer:x:500 xfer:x xfer:500:
dennis:x:5 dennis:x dennis:501:
kenny:x:50 kenny:x kenny:502:
keller:x:5 keller:x keller:503:
russ:x:504 russ:x russ:504:
hlul:x:505 hlul:x hlul:505:
wcc:x:506: wcc:x wcc:506:
linuxfer:x linuxfer: linuxfer:507:

9.7 Combining Files Together
A user may combine text together, line by line, by using the command paste.

Probably the best example would be to combine common records together from
a database for a special application.

The command for combining files is:
$ paste file1 file2

For example, say you have two files, one with a name and the second with
the residence, such as:

Name File:
1234 Doe John
2345 Buyer Mike

Residence File:
1234 Irving
2345 Arlington

Now issuing the command:
$ paste Name-File Residence-File
1234 Doe John 1234 Irving
2345 Buyer Mike 2345 Arlington

HLUL09
© Dennis Rice

8 / 60

Chapter 9 – Data Manipulation Rev 54

9.8 Displaying and Setting the System Date
The DATE utility is used to display the current day, date, and time or for

correcting the system date and time.
The utility provides many options for displaying portions of what is needed, so

that you may use the information in a script.

9.8.1 Displaying a Date
To display the date, issue the command:

$ date
Tue Jan 10 10:18:47 CST 2006

lists the present day, time, and date as computed from the PC clock. Note that
this may not be accurate!

Issuing the command:
$ date +%y
06

To display just the last two digits of the year. Note that you must type in the
“+” character. To display the year in century format, use a capital Y.

$ date +%Y
2006

Issuing the command:
$ date +%m%Y
012006

displays the present month and year only. Note that they run together and there
is no space. To insert a space between the month and year, a space must be
inserted with quotes.

$ date +%m“ ”%Y
01 2006

To display the date in a written out format, one might use:
$ date +%A “, ”%B “ ” %d “ ” %G “ ” %r

Note that there must be no spaces between the options, that spaces between
options must be in quotations. There are many additional options, check them
out in the man page.

9.8.2 Setting the Time and Date
To set the time and date of the computer, issue the following command:

date MMDDhhmm[cc]YY[.ss]
where

MM is the month, 01 – 12
DD is the day of the month, 01 – 31
hh is the hour of the day in military format, 01 – 24
mm is the minute of the hour, 01 – 59

HLUL09
© Dennis Rice

9 / 60

Chapter 9 – Data Manipulation Rev 54

[cc] is the century, optional value is either 19 or 20, must specify for a
different century

YY is the year, 00 – 99
[.ss] is the seconds of the minute, optional if you know how to account

for propagation time

As an example, if we wish to set the date to January 12, 2006, 3:15 PM, one
would issue the command:

date 01120615152006

Note that only the root administrator may modify the system date.

9.9 Displaying a Calendar
The CAL utility is often used to evaluate project due dates – or for figuring out

special days.
The utility provides three calendar formats – year, month and today’s date.
Issuing the command:

cal

lists the full year calendar for the present year.

Issuing the command:
cal year

displays a full annual calendar for the specified year. If the year is specified with
only the last two digits, then you may very well receive an error for the year. To
make sure of what you are doing, specify all four digits for the year.

Issuing the command:
cal month year

where month is a numeric value, displays the specified month and year only.

Just for the curious, you might wish to display the calendar for the year 1752,
and explain what happened in September.

9.10 Comparing Left and Right Files
After collecting and sorting data, we may need to compare two different files

line by line to compare for differences. This can be accomplished by using the
command:

comm (option) File-Left File-Right

HLUL09
© Dennis Rice

10 / 60

Chapter 9 – Data Manipulation Rev 54

This compares two sorted files on a line by line basis. Options include:
-1 Suppress lines that are unique to the File-Left
-2 Suppress lines that are unique to the File-Right
-3 Suppress lines that appear in both files
--help Display help file
--version Display the version information

Lets demonstrate with two simple files:
$ cat > lf and $ cat > rf

a a
b b
c d
e f
f g
g n
m

$ comm lf rf
Left Right
Only Only Both

a
b

c
d

e
f
g

m
n

$ comm –1 lf rf
Right Both If line is in Left Only, line suppressed

a
b

d
f
g

n

$ comm –2 lf rf
Left Both If line is in Right Only, line suppressed

a
b

c
e

f
g

m
HLUL09
© Dennis Rice

11 / 60

Chapter 9 – Data Manipulation Rev 54

$ comm -3 lf rf
Left Right Suppress lines that are common to both files
c

d
e
m

n

9.11 User Dictionary Utilities
Unix and Linux include a user dictionary that may be accessed and utilized to

check your documents.
The base dictionary is located in the /usr/share/dict/words file. There are

three utilities that we may utilize when verifying the spelling of a file. These are:
1. look
2. spell
3. ispell

9.11.1 look
The first utility provides us the ability to look up words in our dictionary file.

The syntax is:
$ look string [/path/file]

Where we wish to look up words in our dictionary that start with the specified
string. By default the /usr/share/dict/words file is used, but an alternative file may
be specified. The output is a list of words that match what you are looking for.

look command
command
commandable
commandant
commandants
commandatory
commanded
commandedness
commandeer
commandeered
commandeering
commandeers

commander
commanderies
commanders
commandership
commandery
commanding
commandingly
commandingness
commandite
commandless
commandment

commandments
commando
commandoes
commandoman
commandos
commandress
commandrie
commandries
commandry
commands

9.11.2 spell
The spell utility provides a check of a file and provides a list of misspelled

words. The syntax is:
$ spell file

$ cat testfile
Now si the tim for all good meen.

HLUL09
© Dennis Rice

12 / 60

Chapter 9 – Data Manipulation Rev 54

$ spell testfile
meen
si
tim

9.11.3 ispell
The ispell utility add to the spell utility by prompting the user with a list of

possible words so that update / corrections may be made immediately. The
syntax is:

$ ispell file

$ ispell testfile
Now si tim for all good meen.

1) Si 6) sir
2) SO 7) so
3) Sir 8) is
4) Sui 9) S
5) sci 0) s
i) Ignore I) Ignore all
r) Replace R) Replace all
a) Add l) Add Lower
b) Abort x) Exit

?

At the “?”, type is the desired option. The selected option will then replace
the improper characters.

9.12 Multiple Outputs from a Command
Two utilities are available that allow the output of a command to be branched

in two different directions at the same time. The intent is slightly different, but
both accomplish the same effect. The goal is to take the output from a
command and direct it to a file and to either the desired file and the screen.

9.12.1 tee Utility
It is often convenient to have the output of another command outputted to

both the screen and to a file, for later observation. This is accomplished using
the tee command.

The syntax of the tee command is:
$ tee [option] filename

The options are:
-a Append the output to an existing file
-i Ignore interrupts

HLUL09
© Dennis Rice

13 / 60

Chapter 9 – Data Manipulation Rev 54

As an example, if we wish to record the output of the info command to
include in another write-up, while observing it on our monitor, we could use the
following:

$ info sudo | tee sudofile

You will now have a new file created - sudo in the present directory.

9.12.2 Logging a Session’s Commands
While issuing commands, it is often convenient to log, or record, your actions

and responses to a file. At a later time, this file may be printed out for review.
The format of the command is:

$ script [option] filename

The options include:
-a Append the session to an existing file.
-f Flush the output from the buffer to the file after each disk writing.

To terminate the script session, issue a CTRL-D (^D) at the bash or sh shell
prompt. Commands that manipulate the screen (such as a text editor like vi or
pico) may produce garbage in the script file.

$ script scriptfile.txt
Script started, file is scriptfile.txt
. . .
$ Whatever commands you issue.
. . .
$ ^D
Script is done, file is scriptfile

9.13 Batched Commands
It is often convenient to create a file with a list of commands that one would

issue multiple times – thus not having to retype all of the commands over and
over. It is essentially the same as the batch command file used in Microsoft,
although it has several advantages over that used by Microsoft. The user may
issue the command by itself, or could create a periodic command using at. The
set of commands may be issued when the processor load drops below an
average of 0.8, or at the designated time. The syntax of the command is:

$ batch -f filename [time]

For example, if we have the following file (batchfile) of commands:
cut -d: -f1,3-5 passwd > passb1
cut -d: -f7 passwd > passb2
paste passb1 passb2 > passb3

Now every time this set of commands are issued, a new file is created that
contains only the username, userid, groupid, and the home directory. This file
may be executed in the same way that the “at” command was, that is at a
specified time, such as:
HLUL09
© Dennis Rice

14 / 60

Chapter 9 – Data Manipulation Rev 54

$ batch batchfile 1404
job 1 at 2006-01-12 14:04

An alternative to issuing the command at the specified time, one can also
have the batch command file issued immediately. This is accomplished by
issuing the command:

$ source batchfile

9.14 Changing GroupID
The newgrp command changes the group identification of its caller.

Effectively, a user by issuing the newgrp command takes on the groupid of the
specified group, assuming they are a member of that group. The command
format is:

$ newgrp groupname

To change back to the user’s personal gropupid, the user needs to issue the
command without specifying a groupname.

9.15 File Verification
When we download a file off of the Internet, it is an excellent idea to verify

that the file has been received correctly – that no errors have been incurred.
There are two alternatives to file verification, cksum and md5sum.

When you find a file that you wish to download, you will commonly observe
that it also includes what is called a checksum value. What you do is to
document this value, download the file, run a checksum program against the
downloaded file, and finally verify that the computed checksum value is the same
as the one you previously documented.

The application etherape-0.8.2-3.i386.rpm has been downloaded from
rpmfind.net as an example for demonstration. From the html page we would find
the MD5 sum of ec9f4404a1c3c2bf67baba22613f1801

9.15.1 cksum
To compute the checksum for a file you issue the command:

$ cksum [option] filename

cksum computes the Cyclic Redundancy Check (CRC) using the POSIX.2
algorithms standard. It is not compatible with the BSD or System V “sum”
algorithm, but is more rebust.

The only two options include:
--help
--version

HLUL09
© Dennis Rice

15 / 60

Chapter 9 – Data Manipulation Rev 54

Running cksum on etherape gives the following:
$ cksum etherape-0.8.2-3.i386.rpm

3834393926 127489 etherape-0.8.2-3.i386.rpm

This should be expected, because the download specified an MD5
Checksum.

9.15.2 md5sum
To compute or check the md5sum of a file, you issue the command:

$ md5sum [option] filename

md5sum computes the 128 bit checksum based on the algorithm specified in
RFC 1321. It computes the value from the specified file or directly from the
standard input (keyboard).

Options include:
-b Read files in binary mode
-c Check MD5 sums against a specified list
-t Read files in text mode (default)
-w Warn about improperly formatted checksum
--status Output status code
--help
--version

Running the md5sum against the etherape application gives us:
$ md5sum –c etherape-0.8.2-3.i386.rpm
md5sum: etherape-0.8.2-3.i386.rpm: no properly formatted MD5

checksum lines found
$ md5sum –b etherape-0.8.2-3.i386.rpm

a4418aa36142f7fc6a88c93d2e932bfc *etherape-0.8.2-3.i386.rpm
$ md5sum etherape-0.8.2-3.i386.rpm

a4418aa36142f7fc6a88c93d2e932bfc etherape-0.8.2-3.i386.rpm

9.15.3 sha1sum
The third option for checking the file's validity is sha1sum. This is a relatively

new verification option. MD5sum has been found to have a vulnerability and
may be updated in the future.

To generate an sha1sum is not a direct as it was for the other two options.
Calculating the sum utilizes the openssl utility. Openssl is a very rich
cryptography utility that is capable of generating many different encryption
hashes, including md5, des, des3, dsa, and many others. It is also capable of
acting as a Certificate Authority, capable of issuing certificates to remote
systems for authentication purposes. To calculate the sha1sum for a file, issue
the following command:

$ openssl sha1 filename
SHA1(filename) = f91842ae84074d82a738d7503c7495b193792756a

The sum generated is 40 characters long, in hexadecimal format. We will
see much more of the use of openssl when security is an issue.
HLUL09
© Dennis Rice

16 / 60

Chapter 9 – Data Manipulation Rev 54

9.16 Column Manipulation
When working with text, columns may be either be created or removed,

depending upon the users requirements.

9.16.1 Creating Columns from Data
The Column utility allows one to convert a single column list to multiple

columns. One option exist to allow control of the utility. The syntax of the utility
is:

$ column [-x] filename

The output is to the standard output – normally the monitor.
If a filename is not specified, then input is taken directly from the keyboard.

After the last item is typed in, on a new line key in a CTRL-D (^D). The list will
then be re-displayed in column format.

As an example, if we issue the command (taking input directly from the
keyboard):

$ column
1
2
3
4
5
^D

results in:
1 2 3 4 5

Additional options exist, which the reader is referred to the man page. (Note
– the “-c” option appears to not work as specified.

9.16.2 Removing Columns from Data
Using the colrm, one can remove columns from data that has been

previously formatted in a columnar format.
The format of the command is:

$ colrm [startcol] [endcol]

If the command is issued with just one parameter, then columns starting with
the first value will be removed. If two parameters are specified, then the
columns starting with the first value and ending with the last value will be
removed.

Each character position is considered a column, as demonstrated in the
following examples.

$ colrm 4
1234567890
123
$ colrm 4 6

HLUL09
© Dennis Rice

17 / 60

Chapter 9 – Data Manipulation Rev 54

 1 2 3 4 5 6 7 8 9 0
 1 2 3 7 8 9 0

One may also take input from a file by using the input redirector. For
example, create a file with the contents:

$ cat > colfile
This is the time for all to learn Linux.
^D
$ colrm 9 17 < colfile
This is for all to learn Linux.

9.17 Controlling a ZIP Drive
In like manner to the mtools, one can also issue special commands to a zip

disk.
The command format is:

$ mzip [option]

Options include:
-e Eject the disk.
-f Force an eject even if the disk is mounted (must be

issued along with the e option.
-r Write protect the disk.
-w Remove the write-protection.
-x Password protect the zip disk.
-u Temporarily unprotect the disk until it is ejected. The

disk is writable and reverts back to its protected
status when ejected.

-q Queries the zip disk status.

In order to remove a password protected zip disk, set it to a password-less
mode (-r or –w), at which time you will then be queried for the password. If you
forget the password, all data will be lost as to reuse the disk, you will have to
perform a low level formatting. Note that this command may not be supported
on more modern units.

9.18 Converting Tabs to Spaces
When reading a document we may find that it contains the TAB character,

but we would prefer to have white spaces instead. This is accomplished by
issuing the command:

$ expand [options] filename

Options include:
-i Do not convert TABs after a non-whitespace.
-t Set tabs specified number of characters apart rather than the

default 8.

HLUL09
© Dennis Rice

18 / 60

Chapter 9 – Data Manipulation Rev 54

expand maintains the same spacing as if a tab still exists, thus maintaining
the spacing.

Output of expand is normally to the standard output (monitor). If you want to
create a new file, you need to use the director (>) to create a new file.

An example of the usage is the file expandfile:
1 2 3 abc def
1234567890 abc def

where the spacing between characters is a TAB.

The output of the above file would be:
$ expand filename
1 2 3 abc def
1234567890 abc def

There is no obvious difference in the text spacing, but the tab has been
replaced with the appropriate number of spaces to maintain proper alignment.

9.19 Converting a Text File to Postscript
In the process of creating text files, such as documentation, it is convenient to

convert the file to Postscript format. Normal output may be either to a file or
directly to a printer. There are numerous options, of which only a few will be
covered in this review.

The syntax of the command is:
$ enscript [option] input-file

Some options includes:
-# Print the specified number of copies.
-1, -2 Specify the number of columns to be printed.
-a pages Print the specified pages. Additional options exist for

this.
-b header Add a page header string as specified by header.
-c Truncate lines, by default, lines are wrapped.
-d name Spool printer to printer name.
-v Verbose mode – tell what enscript is doing.
-W lang Generate output in specified language.

Postscript (default)
html – generate html code
overstrike – generate overstrikes
rtf – generate Rich Text Format

-toc Print a Table of Contents at the end of the printjob.
-p filename Output file to file filename.

9.20 Displaying the Last N Issued Commands
An alternative to the history command is fc. This will list out a limited set of

history commands, depending on the specified option. The command syntax is:
$ fc (option) (first) (last)

HLUL09
© Dennis Rice

19 / 60

Chapter 9 – Data Manipulation Rev 54

fc issued by itself will re-issue the last entry. If the entry was not a command,
then the vi line editor will be invoked. Recall that the way out of vi is {ESC:q}

Options include:
-l Display only the last 17 commands by default
-l –10 Displays the last ten command (value is variable)
-lr Displays the last 17 commands in reverse order
-ln Suppress command line numbers

An example of its usage is:
fc -l 101 110
101 cd /qos
102 ssh gateway
103 cd /etc/sysconfig/network-scripts/
104 ls
105 cat ifcfg-eth0
106 cd /etc
107 cat resolv.conf
108 clear
109 cat resolv.conf
110 clear

9.21 Group Password
The /etc/group file may be administered by issuing the command:

gpasswd [option] group-name

Additional options are available that allow users to be added to a group, and
a group administrator may be created. This would relieve the system
administrator from having to provide services to a specific group.

Options include:
gpasswd group Prompts the administrator for a new group

password.
gpasswd -a user group Add a user to the specified group.
gpasswd -d user group Delete a user from the specified group.
gpasswd -r group Removes the password from the group.
gpasswd -A user group Specifies the user as an administrator of

the group.
gpasswd -M user group Specifies the user as a member of the

group and deletes other members except
for the administrators.

gpasswd -R group Disables access to the group ID through
the newgrp command.

An example of using the gpasswd command is:
$ gpasswd test Add a password to the group test
Enter password:
Re-Enter password:

HLUL09
© Dennis Rice

20 / 60

Chapter 9 – Data Manipulation Rev 54

$ gpasswd -A dennis test Add user dennis as an
administrator
$ gpasswd -a brian test Add user brian
$ gpasswd -a russ test Add user russ
$ cat group | grep test Display the group test
test:x:507:brian,russ
$ cat gshadow | grep test Display the group shadow for

group test
test:Lj5U3UBverz7.:dennis:brian,russ

9.22 Learning the Login Name
Within a script it may be necessary to learn who the application is running

under. This can be easily achieved by issuing the command:
$ logname
dennis

9.23 Listing Directory Contents with DIR
The command dir is a holdover from the DOS Operating System. It is

completely equivalent to the ls command.
$ dir

9.24 Logging in as Another User
The command login allows a user to change from one login name to another.

This is similar to Switch User (su), but is a permanent login change. The
command format is:

$ login

The effective action of the command is to log out as the present user and
issue a new login prompt. Changing from a normal user to the administer is not
permitted.

9.25 Merging 3 Files
Three files can be merged together by using the merge command. This can

be useful when you have your original file and two other files that have
modifications to the original.

Merge incorporates all of the changes that were made to file-3 that originated
from file-2 into file-1. Normal operation is for file-2 to be the original, file-3 has
modifications, and the output is written to file-1. If file-1 originally also has
changes from file-2, then the changes from both file-1 and file-3 will be written to
written to file-1.

A simple example is required to demonstrate what happens. Because of the
order of the files being combined, we will set up the following files:

HLUL09
© Dennis Rice

21 / 60

Chapter 9 – Data Manipulation Rev 54

File1:
Now is the time
For all good men

File2:
Now is the time

File 3:
For all good men to come
to the aid of their party.

Now issuing the command:
$ merge File2 File1 File3

Results in:
merge: warning: conflicts during merge
The new File2 has the contents:
<<<<<<< File2
Now is the time
=======
for all good men to come
to the aid of their party.
>>>>>>> File3

When files 1 and 3 have changes in common between the lines, it is common
to output a warning to the monitor and to include the changes into file 1 with the
warning message. The above is an example shows the warning. The user must
manually edit the file to remove the warning message.

9.26 Detecting Mouse Clicks
When in a text mode, either in a full CLI or Xterminal, one can detect mouse

clicks and wheel scrolling, but not movement. The output is typically to the
stdout (monitor), but may be redirected to other applications. Additional
research on the part of the user is required to determine if this command might
be useful to their application.

When the command mev is issued at a run level 3, various characters will be
outputted to the monitor indicating clicking of the mouse buttons or changes to
the scroll wheel. If in an Xterm session, then the command rmev must be used.

The command syntax is:
$ mev

There is no special options, you will see the a text line, repeated every time
you move the mouse. The line will have the format something like:

mouse: event 0x01, at 74,14 (delta -1, 0), buttons 0, modifiers 0x00

This tells you:
Coordinates (74,14) specifies the mouse ball location

HLUL09
© Dennis Rice

22 / 60

Chapter 9 – Data Manipulation Rev 54

(delta -1, 0) specifies the change from the previous location
Button pressed:

Left button: 4
Right button: 1
Middle button: 2
Both buttons: 5
Scroll roller: 0

This is repeated every time the mouse ball is moved or a button is clicked.
The action is terminated with the clicking of Ctrl - C.

9.27 Modifying a Command’s Priority
When issuing a set of commands that are conflicting in time resources, it may

be necessary to alter the priority of one or more commands, allowing one to
operate with more processor cycles than another. Any user may reduce the
priority of an application, but only the administrator may increase its priority.

The command syntax to modify the priority of a command is:
$ nice (option) command [arguments]

The one functional option is –n, where n is a value between –20 (lowest) and
19 (highest).

An instance where this would be helpful might be when compiling programs,
and you want to perform other activities, and would set the compiling process to
a lower priority.

9.28 Numbering the Lines of a File
The command nl numbers each line of a file. The syntax of the command is:

$ nl [option] file

Issuing the command without an option will display the file contents (like cat),
but with line numbers prefixed to each line.

Options include:
-ba Number all lines
-bt Number only non-empty lines (default)
-bn Number no lines

Additional options are available that need to be reviewed
As an example, say we have the file 'nlfile':

This is the time for all to learn Linux.

One needs to study hard to learn the commands.

Our output would then be:

HLUL09
© Dennis Rice

23 / 60

Chapter 9 – Data Manipulation Rev 54

$ nl nlfile
1 This is the time for all to learn Linux.

2 One needs to study hard to learn the commands.

Then issuing the command:
$ nl -ba nlfile
1 This is the time for all to learn Linux.
2
3 One needs to study hard to learn the commands.

9.29 Format a File for Printing
It is often convenient to format a file for setup to the printer. The pr

command allows the user to perform this task. Using pr the user may format text
in columnar mode, printing across rather than vertical, double space text and
many options. The syntax of the command is:

$ pr [option] file

Options include:
-COLUMN Output the specified number of columns, balancing the

number of lines on each page
-a Print columns across rather than down, used with the –

COLUMN option
-c Show control characters
-d Double space text
-F, -f Use form feed to separate pages
-h HEADER Create a header with the text of HEADER
-l n Set page length of output to n lines
-o n Set margin width to n spaces
-W n Set page width to n characters

Many additional commands options exist that the user should investigate.

9.30 Precision Calculator
dc is a high precision desktop calculator that utilizes the “reverse-polish-

notation (RPN)”1 technique to perform its calculation – that is, there is no
ENTER key. This process is identical to how a computer solves numbers, and
what is used on calculators manufactured by Hewlet-Packard. What is hard to
get use to is that there is no equal sign used during the calculations.
Calculations to be performed may be entered directly from the keyboard or from
a file. The command format is:

$ dc [filename]

1 RPN is named after a mathematician of polish decent - whose name no one can pronounce. Hence it
was called Reverse Polish Notation.

HLUL09
© Dennis Rice

24 / 60

Chapter 9 – Data Manipulation Rev 54

The concept of how the reverse-polish technique works is best illustrated by
example. When dc is used, it sets up an area in memory called a stack. When
the first value is keyed into the system, it is stored, or pushed, into the first stack
position, stack1. When the second value is keyed in, the first value is “pushed”
down to into the stack position 2, stack2, and the new value is pushed into
stack1. If one wishes to then add the two values, the “+” key is then keyed in,
and the values are added together and the resultant is pushed into stack1.

Many options are available, and only a few of the basic ones are covered
here, refer to the man pages for additional options.

p Prints the value of stack1.
f Prints the values of all stacks.
N Prints the value of stack1, then deletes the value and pulls the

values up by one unit from lower stacks.
+ Adds the values of stack1 and stack2, replacing stack1 with the

resultant.
- Subtracts the value of stack1 from stack2, replacing stack1 with the

resultant.
* Multiplies the values of stack1 and stack2, replacing stack1 with

the resultant.
/ Divides the value of stack1 by stack2, replacing stack 1 with the

integer quotient. The remainder is not displayed.
% Divides the value of stack1 by stack2, replacing stack 1 with the

integer remainder.
~ Divides the value in stack1 by the value in stack2. The quotient is

pushed into stack1, then the remainder is pushed into stack1,
which pushes the quotient into stack2.

The following is a simple example of the process of using the dc calculator
with input from the keyboard.

$ dc
10
20
+
p
30 Add 10 and 20, print the result

50 46 – p
4 Subtract 46 from 50, print the results

18 6 * p
108 Multiply 18 by 6, print the results

605 25 / p
24 Divide 605 by 25, print the quotient with no remainder

605 25 % p
5 Divide 605 by 25, print only the remainder

HLUL09
© Dennis Rice

25 / 60

Chapter 9 – Data Manipulation Rev 54

605 25 ~ f
5 Divide 605 by 25, print the value of all stacks, the first
24 two contain the quotient and remainder of the division
5
24
108
4
30
$

9.31 Prime Factors of a Number
Every once in a while, we need to know the prime factors of a number. This

is just what you needed when you were back in the 5th grade – oh well, can't win
them all. To output the primes, issue the command:

$ factor number

The only options for this command are:
$ factor --help Specifies help for command.
$ factor --version Specifies the version of the command.

As an example of the command:
$ factor 312
312: 2 2 2 3 13

9.32 Reversing Text Output
Every once in a while, there arises a need to do something weird with the

text. This is one of them, which I am sure there was a good need, but I am not
sure for what. I have been told that it has been used for reversing one's
password, thus making it harder to decrypt.

If you wish to reverse the text – this is a good command. Issuing the
command:

$ rev filename

This causes the text to be replicated in reverse order on the monitor. If the
text is to be saved, then the output must be directed (>) to a new file.

An example might be:
File:
Now is the time
to come to the
aid of our
America. It is a
time of need.

The output would be:
$ rev file
emit eht si woN

HLUL09
© Dennis Rice

26 / 60

Chapter 9 – Data Manipulation Rev 54

eht ot emoc ot
 ruo fo dia
a si tI .aciremA
.deen fo emit

This command was originally designed to reverse a user's password before it
was submitted. Beyond that, you can now Have Fun!

9.33 Displaying a Sequence of Numbers
The command seq displays a sequence of numbers. The format is one of

three forms:
$ seq LAST
$ seq FIRST LAST
$ seq FIRST INCREMENT LAST

Although additional features are available (refer to the man pages), the
typical output is as follows:

$ seq 5
1
2
3
4
5

$ seq 5 10
5
6
7
8
9
10

$ seq 5 5 30
5
10
15
20
25
30
$

9.34 Serial Port Statistics
When developing a program or script, it may be beneficial to monitor the

signal / pin status of a serial port. A simple utility to do this is:
$ statserial

HLUL09
© Dennis Rice

27 / 60

Chapter 9 – Data Manipulation Rev 54

The status of each line is updated once each second by default, but may be
set to not update if desired. Utilization of this utility would be for testing the serial
interconnection to other equipment, such as a modem or router.

Issuing the statserial command results in the following:
$ statserial
Device: /dev/ttyS0

Signal Pin Pin Direction Status Full
Name (25) (9) (computer) Name
----- --- --- --------------- -----
FG 1 - - - Frame Ground
TxD 2 3 out - Transmit Data
RxD 3 2 in - Receive Data
RTS 4 7 out 1 Request To Send
CTS 5 8 in 1 Clear To Send
DSR 6 6 in 1 Data Set Ready
GND 7 5 - - Signal Ground
DCD 8 1 in 1 Data Carrier
Detect
DTR 20 4 out 1 Data Terminal
Ready
RI 22 9 in 1 Ring Indicator

Over time, presuming that the serial port is operational, the Status value will
change as the data flows across the network. It only samples the data about
once a second, so the actual may not show actual real time data transfer.

9.35 Splitting a File
There are times when a file may be too long, requiring them to be split into

multiple parts. This may be required for transmission purposes, storage, or
possibly even security.

There are two alternatives to splitting a file, csplit and split.

9.35.1 Splitting a File by Pattern
The format of the command to split a file by a specified pattern is:

$ csplit [options] File Pattern

The output of the original file are differentiated by the Pattern.
Where a file is split is specified by the Pattern, the first file will start with line 1

and continue up to the line number specified by the pattern number. Thus a file
that is 10 lines long, with a pattern of 5, will be split as two files, the first being 4
lines and the second starting with line 5 through 10. If one wishes to divide the
file into three parts, with a pattern of 4 and 8, the the first file will contain 3 lines
(1-3), the second 4 lines (4-7), and the last 3 lines (8-10). Naturally, the each
pattern number must be greater than the previous one.

The default output of the utility is to a set of files that are of the form:
xxYY

HLUL09
© Dennis Rice

28 / 60

Chapter 9 – Data Manipulation Rev 54

where 'xx' is the file name header and 'YY' is modified to represent the file
sequence. The first value of YY is '00'.

Options include:
-f PREFIX Creates the output file with the specified prefix name.
-b SUFFIX Creates the output file with the specified suffix name.
-n # Creates the output file with the specified number of

digits, the default is 2.
-k Keep any files created in the event of an error. Files

are normally deleted if there is an error.
-z Suppress creation of files that are zero length.

Lets start by creating a file that we wish to split:
Now is the time
to come to the
aid of our
America. It is a
time of need.

Issuing the command:
$ csplit file ‘3’

creates:
xx00 file:

Now is the time
to come to the

xx01 file:
aid of our
America. It is a
time of need.

Issuing the command:
$ csplit file ‘2’ ‘4’

creates:
xx00 file:

Now is the time

xx01 file:
to come to the
aid of our

xx02 file:
America. It is a
time of need.

HLUL09
© Dennis Rice

29 / 60

Chapter 9 – Data Manipulation Rev 54

9.35.2 Spitting a File by Length
A file may be split into fixed length size files. The output files are designated

as xyy, where by default, the base filename is 'x' and the yy extension is the
characters of aa, ab, ac …, changing the character as necessary. The default
size of the output file is 1000 lines in each file, with remainder in the last file.
The format of the command is:

$ split [optons] Filename [prefix]

You may modify the output filename by specifying the prefix. Options
include:

‘-b BYTES’ Size of output file in Bytes.
‘-C BYTES’ Size of output file in a number of complete Lines less

than the specified number of Bytes
‘-l LINES’ Size of output file number of lines.

Lets start with the file:
$ cat file
Now is the time
to come to the
aid of our
America. It is a
time of need.

To illustrate with examples. To understand what is happening, you need to
remember to count spaces and new-line characters (MS uses Linefeed /
Carriage Return). To illustrate, a substitution will be shown for the space (^) and
newline ($):

$ split -b 15 file
$ cat xaa
Now^is^the^time^^$

$ cat xab
to^come^to^the$

$ cat xac
aid^of^our$
Amer

$ cat xad
ica.^^It^is^a^$

$ cat xae
time^of^need.$

Notice that the prompt is typically appended to the end of a line, this is due to
the fact that the character at the end of the number of specified Bytes is not a
Line Feed.

HLUL09
© Dennis Rice

30 / 60

Chapter 9 – Data Manipulation Rev 54

$ split -C 15 file
$ cat xaa
Now is the time --

$ cat xab

$ cat xac
to come to the

$ cat xad
aid of our

$ cat xae
America. It is

$ cat xaf
 a

$ cat xag
time of need.

And for our last example:
$ split –l 3 file
$ cat xaa
Now is the time
to come to the
aid of our

$ cat xab
America. It is a
time of need.

9.36 Terminal Connectivity
The tty command displays the terminal that the stdin is connected to. When

connected to the default terminal from boot, the response would be:
$ tty
/dev/tty1

If you should switch to an alternate terminal (ALT-Fx), then the output will
reflect which terminal is presently in use (ALT-F2 outputs /dev/tty2).

9.37 Testing a Condition
When creating scripts, it is often necessary to test the status of variable. This

is one of the most important tasks required of a network administrator when
administering a network. A variable may be a condition, or the existence of a file

HLUL09
© Dennis Rice

31 / 60

Chapter 9 – Data Manipulation Rev 54

or various other conditions. It is primarily intended to test file types and to
compare values.

The syntax of the command is:
$ test expression or
$ test option

An expression may take on many options. All of the following output a TRUE
status.

Condition If Condition Is
(Expression) True
! (Expression) False
Expr1 -a Expr2 True and True
Expr1 -o Expr2 True or True
-n STRING Length of STRING is not zero
-z STRING Length of STRING is zero
STRING1 = STRING2 STRINGs are equal
STRING1 != STRING2 STRINGs are not equal
INTEGR1 -eq INTEGR2 Integers are equal
INTEGR1 -ge INTEGR2 Integer1 is greater than or equal to Integer2
INTEGR1 -gt INTEGR2 Integer1 is greater than Integer2
INTEGR1 -le INTEGR2 Integer1 is less than or equal to Integer2
INTEGR1 -lt INTEGR2 Integer1 is less than Integer2
INTEGR1 -ne INTEGR2 Integer is not equal to Integer2
FILE1 -ef FILE2 File1 and File2 have the same Inode numbers
FILE1 -nt FILE2 File1 is newer (modification date) than File2
FILE1 -ot FILE2 File1 is older than File2
-b FILE File exists and is block special
-c FILE File exists and is character special
-d FILE File exists and is a directory
-e FILE File exists
-f FILE File exists and is a regular file
-g FILE File exists and is Set-Group-ID
-G FILE File exists and is owned by the Effective Group
ID
-k FILE File exists and has its Sticky Bit set
-L FILE File exists and is a symbolic link
-O FILE File exists and is owned by the Effective user
ID
-p FILE File exists and is a named pipe
-r FILE File exists and is readable
-s FILE File exists and has a size greater than zero
-S FILE File exists and is a socket
-t [FD] File Descriptor FD (stdout by default) is

opened on a terminal
-u FILE File exists and its Set-User-ID is set
-w FILE File exists and is writeable
-x FILE File exists and is executable

HLUL09
© Dennis Rice

32 / 60

Chapter 9 – Data Manipulation Rev 54

When evaluating a combined value in a shell, the parentheses must be
escaped (must be preceded by a backslash).

9.38 TIFF Image Information
A TIFF image contains information that may be useful when manipulating the

image. This ability may be important to the user that is working with TIFF
images on various projects. Several utilities are available.

9.38.1 TIFF Information
Each TIFF image, or also known as a directory, contains information

regarding the image. This may be displayed with the following command:
$ tiffinfo [options] image.tif

Options include:
-c Display the colormap and color / gray response curves, if
present
-D In addition to displaying the directory tags, read and

decompress all the data in each image (but not display it).
-d In addition to displaying the directory tags, print each byte of

decompressed data in hexadecimal.
-j Display any JPEG related tags that are present.
-o Set the initial TIFF directory according to the specified file

offset. The file offset may be specified using the usual C-
style syntax.

-s Display the offsets and byte counts for each data strip in a
directory.

-z Enable strip chopping when reading image data.
-# Set the initial FIFF directory to #

9.38.2 TIFFDUMP
The utility tiffdump displays information from files created according to the

Tag Image File Format. The header of each TIFF file contains three values,
Magic Number, Version, and First Directory Offset. These values are displayed,
followed by the tag contents of each directory in the file. For each tag, the name,
datatype, count, and value(s) is displayed.

When the symbolic name for a tag or datatype is known, the symbolic name
is displayed followed by it’s numeric (decimal) value. Tag values are displayed
enclosed in “<>” characters immediately preceded by the value of the count field.

For example, and ImageWidth tag might be displayed as
ImageWidth (256) SHORT (3) 1<800>

tiffdump is particularly useful for investigating the contents of TIFF files that
libtiff does not understand.

HLUL09
© Dennis Rice

33 / 60

Chapter 9 – Data Manipulation Rev 54

9.39 Utility Time
When running a command or utility, it may be appropriate to know how long

the command took to perform its task. The time can be monitored by using the
command:

$ time command

The output displays the command, user and cpu statistical times.
$ time sleep 5
real 0m5.011s
user 0m0.000s
sys 0m0.010s

9.40 Wordwrapping Text
Quite often, you have data that is wider than the screen. Some display

applications will automatically wordwrap the longer line, but others do not. If you
desire to have a file that is formatted for screen output, issue the command:

$ fold [options] file

The output is issued to the stdout or monitor. The most common option is –
w, which specifies the character width of the display, the default is 80 characters.

$ cat test.txt This is the test file
1231234564567897891234567891234567893216654987321654987369
2581473692581479713642859745613698741258963125578931456

$ fold -w 60 test.txt
1231234564567897891234567891234567893216654987321654987369
25
81473692581479713642859745613698741258963125578931456

$ fold -w 40 test.txt
1231234564567897891234567891234567893216
6549873216549873692581473692581479713642
859745613698741258963125578931456

9.41 Determining the User ID
During the administration of a system, it is sometimes necessary to know the

specific details about a user. A user may be having problems during their
operation, and you need to assist them, and need to know some vital facts of
their login.

Issuing the command id provides this information.
$ id [user]
 uid=505(jdoe) gid=505(jdoe) groups=510(sales),580(dd)

The [user] option allows you to specify another user.
This tells us the following information:

uid: 505 Every user is assigned a numeric id.
HLUL09
© Dennis Rice

34 / 60

Chapter 9 – Data Manipulation Rev 54

gid: 505 Every user also has a group created with the same name as
their userid. In general, the groupid will also be the same number.
Do not confuse these two entities or numbers, they are totally
different, but inter-related.

Groups 510, 580:
These are additional groups that jdoe belongs to.

9.42 User Identity Information
Every user on a system has additional information that may be added. This

information is optional.
The first option is the passwd comment field. Quite often, we fill this field with

the user’s name. Because it is a comment field, any information may be placed
in it. To modify the contents, issue the command:

$ usermod –c “user’s name” username

For the second option, we utilize the properties of finger. When you finger
someone, you requested user information about them. To specify the finger
information, issue the command:

$ chfn username
Name: User’s Name
Office: User’s (Work) Address
Office Phone: User’s Office Phone
Home Phone: User’s Home Phone

This updates the information for the user. The updates are stored in the
/etc/passwd file.

To read the finger information for a user, we issue the command:
$ finger username

The response will be:
Login: username Name: User’s Name
Directory: /home/username Shell: /bin/bash
Office: Office Address Office Phone: Phone
Home Phone: Home Phone
Last Logged In
Mail Status
No Plan

This process also stores the information in the /etc/passwd file in the
comment field. You can open the file and read the contents for the specified
record.

In order to allow the information to be observed, we must set up your system
as a finger server. First check to see if it is active by using the chkconfig utility.
If set to off, then turn it on. Activate and restart the service. If you do not
activate the service, you will be able to only obtain data from your system.

HLUL09
© Dennis Rice

35 / 60

Chapter 9 – Data Manipulation Rev 54

Under normal circumstances, we do not desire to activate the finger service,
as it may be used to obtain information about users. This compromises your
system security.

9.43 History of Past Commands
Over a period of time, we issue many commands on our system. Quite often

we tend to repeat the commands a number of time – especially if we are doing
something that is repetitive.

Unix and Linux maintain a list of the last commands issued. The list may be
set by the user, but by default is either 500 or 1000 lines long. There are several
options for accessing the list and using past commands.

9.43.1 Listing the Previous Commands using history
The first command available for listing previously issued commands is:

$ history

This will present a numbered list, one command per line. If you have been
issuing commands for some time, then your list is quite long and you will see
them scroll past you on the screen.

Utilizing the pipe (|), you can limit the display to only the top or bottom 10
commands by using it in conjunction with either the top or tail utility. If you need
to select a specific command, you may utilize the grep.

To utilize one of the commands, several options are available.
1. Use the up or down arrow keys to select the desired command.

Normally you will start with a blank line, using the up arrow will
scroll through the list from the bottom up, or most recent issued
command first. You can return to the bottom by using the down
arrow key.

2. You can reissue a command by using the “!” (bang) command and
the number of the previously issued command. This will bring up
the command at the prompt, where upon hitting the ENTER key will
cause the command to be issued.

3. You can issue the bang and the first couple of letters, where upon
the command will be completed.

9.43.2 Listing Previous Commands using fc
The command history listed the last 1000 command that the user has issued

– overwhelming. If we need to only look back through the last 20 commands, we
can issue the command:

$ fc -l

This provides the same basic information, and a lot more manageable. See
the previous discussion for more detail.

9.43.3 Completing a Filename using the TAB Key
Beyond the ability to recall past commands from the history list, you can also

use the TAB key to complete a filename. By typing the first few characters of a
HLUL09
© Dennis Rice

36 / 60

Chapter 9 – Data Manipulation Rev 54

filename and then pressing the TAB, the system will automatically complete the
filename up to an unambiguous point. Pressing the TAB again will list all of the
filenames that match the characters typed in so far.

9.44 Unattended Jobs using at
We often have the need to have a job or process take place at a later time.

Common examples would be the scheduling of a job late at night after you have
gone home. This enables the computer to perform a task when it otherwise
would be operating relatively idle.

There are several options to perform this task. If a job is to be performed
periodically, such as a network backup, then we would use the cron application
– this will be covered in the next section.

For infrequent applications, we have two applications which might be utilized
– sleep and at. Sleep can delay the process of a job, but does not allow one to
still use the computer unless it is performed in the background. At allows one to
schedule a job at a later time and then resume using the computer for their
normal tasks. An excellent application for at would be the researching of a
database for specific information that will require several hours, thus we might
like to run the program late at night.

The output of the at process must be to a file. That is, either you must have
the output directed to a file, or the application being processed must create a file.
This is because the at process is not capable of directing the output to the
standard output (monitor).

The generalized format of setting up the at process is as follows:
$ at hhmm

The hhmm is the hour and minute that you wish the process to take place,
and may be in the format of either 12 hour, with an AM / PM designator, or 24
hour.

Following the first line, you need to input the command that you wish to have
executed. Multiple commands may be implemented, one per line, or all on one if
each is separated by a semicolon. Each command is entered following the “at>”
prompt. After all of the commands have been entered, on a new prompt line,
enter a CTRL D (^D).

As an example of creating a simple file to be performed in three minutes,
creating a simple new file in the /lab directory.

$ date
$ 8 Feb 2003 12:20:25
We do the date just to find out the current time so we can have the
command completed in a few minutes.
$ at 1223
at> echo “AT command 1” > /lab/at1
at> ^D
$ job 7 at 2003 - 02 - 08 12:23

HLUL09
© Dennis Rice

37 / 60

Chapter 9 – Data Manipulation Rev 54

Now in several minutes, 12:23, our system will create the file /lab/at1 will be
created with the contents of “AT command 1”. The job has been assigned the
numeric value of 7 in this example.

Several minutes later (i.e. after 12:23) we go to the /lab directory, and find the
file ‘at1’. Displaying the file, we will find that it contains the contents of “AT
command 1”.

So now we know how to have a command implemented at a later time, but
how might we observe what jobs are in queue. Again we have two options:

$ at –q or
$ atq

This will generate a list of jobs that are pending to be processed.
An alternative to having the output of a process being directed to a file, one

could send an email to either yourself or to someone else. This may be
performed by issuing the command:

$ at > echo “Linux class test at 10 AM.” | mail your-username

Now a mail will be sent to you (on the system you are working on) with the
contents of ‘Linux class test at 10 AM.’ By putting in a full email address, and
assuming that a mail system has been properly set up, one could send mail to
whomever one would want.

9.45 Unattended Periodic Jobs using cron
As an administrator, we often require the need to repeat a specific command

on a regular basis. A common requirement would be for a daily backup.
Once every minute, a process called cron is activated, checking to see if

there are processes that need to be run. If one should exist, it runs that script or
application. Running an application may be set up by the minute, hour, day of
month, or day of week.

The default file that maintains this information is /etc/crontab. We can either
list the file directly (less), or use the command crontab –l. The format of the
output is as:

1) 01 * * * * run-parts /etc/cron.hourly
2) 02 4 * * * run-parts /etc/cron.daily
3) 22 4 * * * run-parts /etc/cron.weekly
4) 42 4 1 * * run-parts /etc/cron.monthly

We read these command lines as:
minute hour day-of-month month day-of-week /path/command [command-

options]

The range of values for each of these fields is:
minute 0 – 59
hour 0 – 23
day-of-month 1 – 31
month 1 – 12
day-of-week 0 – 6 where 0 = Sunday and 6 = Saturday

HLUL09
© Dennis Rice

38 / 60

Chapter 9 – Data Manipulation Rev 54

A “*” is a wild card – all values are accepted. A range of values may also be
specified, such as 1 – 5.

The above four cron commands generate the following:
➢ At 1 minute past every hour, the application run-parts runs all

scripts in the /etc/cron.hourly directory.
➢ On every day at 4:02 AM, the application run-parts runs all scripts

in the /etc/cron.daily directory.
➢ On every week at 4:22 AM, the application run-parts runs all

scripts in the /etc/cron.weekly directory.
➢ On every month on the first day of the month at 4:42 AM, the

application run-parts runs all scripts in the /etc/cron.monthly
directory.

To run a script (application) at one of these specified times, all we need to do
is to create a script in the appropriate directory.

If we want to create or modify the user crontab file, we need to edit the
crontab file. This file should not be edited manually, but be modified using the
command crontab X, where X is:

– l lists the existing contents of the crontab file
– r remove an entry from the crontab file
– e edit the crontab file

In doing a listing (ls) of cron*, we observe four cron lines – cron.hourly,
cron.daily, cron.weekly, and cron.monthly. If we want to create a new entry, for
example to ping another station to verify its activity, we could have the command
issued once every 2 hours during the business day at 45 minutes past the hour.
Our time codes need to be:

45 8,10,12,14,16,18 *1 *2 1–5
45 minute of the hour
8,10,12,14,16,18 hours
*1 every day of the month
*2 every month of the year
1–5 every Monday through Friday

Special Note:
The default editor is vi. When crontab –e opens the file for editing, you

must be able to navigate to edit it. The following commands will get you through
the editing with minimal effort:

i puts vi into insert (text) mode
esc puts vi into the command mode
: at command mode, tell it that a command will follow
w at command mode, writes the file out
q at command mode, quits vi

The command that we need is ping –c 5 ahost, where ahost specifies
an IP address obtained from our /etc/hosts file.

HLUL09
© Dennis Rice

39 / 60

Chapter 9 – Data Manipulation Rev 54

Using crontab –e, we enter the following information:
45 8,10,12,14,16,18 * * 1–5 ping –c 5 ahost

This entry will cause a ping to be transmitted 5 times to the ahost system
(assumed to have an entry in the /etc/hosts file) to be issued at 8:45 AM, 10:45
AM, 12:45 PM, 2:45 PM, 4:45 PM, and 6:45 PM on Monday through Friday for
every week of every month.

Upon saving the file, it creates a new (or edits the existing) file
/var/spool/cron/username. If you are logged in as root, then the file name will
be /var/spool/cron/root.

When the command is run, its output is not to the screen, but is sent as an
email to the user, in our case to root@localhost.com . To read the mail, issue
the command mail. This will bring up a listing of your existing mail message –
now hit the 1 key to read the first message; if there are multiple messages, you
can either hit the number or the n key (next).

Now say you want to create a “very simple” script to demonstrate the
operation. First change to the /root directory, then using nano, create a new file
called echohi. In this file, enter the following lines:

#!/bin/bash
echo the following line
echo “Hello there, have a nice day.”

Before we can run the script, we need to make it executable. To do this, we
need to modify the permissions of the file. Issue the command:

$ chmod +x echohi

Going back and looking at the attributes of the echohi file, you will observe:
-rwxr-xr-x 1 root root …

You can test this script file by issuing the command:
$ /root/echohi or
$./echohi (if in the /root directory)

Note that in order to execute a command from within a directory, one must
tell the system where to find it – thus the reason for the “ ./ ” in front of the
command. This tells the system that it can find the command within the
immediate directory.

And you should observe the following text:
Hello there, have a nice day.

Now again edit the crontab file (crontab –e) and insert the following line:
0,10,20,30,40,50 10,11,12,13 * * * /root/echohi >>

/root/echohifile

Remember to enter into the text mode to insert the character string, and
when done, to write / save the file, then exit. Once the file has been modified, it
will immediately start acting on the command.

HLUL09
© Dennis Rice

40 / 60

mailto:root@localhost.com

Chapter 9 – Data Manipulation Rev 54

9.46 Creating Your Own Command
We often want to simplify commands that we use continuously. This might

be an advantage where we can combine several commands together and
rename it to a unique name.

To observe existing alias commands, issue the command: alias
A new alias can be created by typing the command:

$ alias {newname}=‘{command line}’

Note that the single quote character “ ‘ ” must be included and that there are
no spaces either before or after the equal sign.

A simple example is if you wish to list the details of all files, which is ls -1.
Say you want to use an alternative command of lsl to mean the same. Give the
command:

$ alias lsl=‘ls –l’ {no spaces around “=” sign}

Unfortunately with this command format, it is only good during the specific
power-up of Linux if you shut down, the alias command will be lost. To maintain
the command every time you power up, you need to modify a file in the user
home directory using the vi (pico) editor.

If you wish to make changes which are exclusively for you, then you need to
modify the /root/.bash_profile in your home directory (or the home directory of
the logged on user). We first need to change to the home directory, type:

$ cd
this returns you to your home directory. If you are the root administrator, you will
be at root, otherwise you will be at the appropriate user's home directory.

Using vi or nano, type:
$ vi .bash_profile make sure you insert the "." before the bash.

or
$ nano .bash_profile

If using vi, change from the command line mode to the insert mode (type i)
and add the line just below the first set of comments:

alias lsl='ls –l' “l” is the lower case “L”.

Before these become active, the user must either
logout and then login again or
shutdown and reboot

From the command line you can now type the command lsl and you will
receive a list of all the files with their respective properties.

If you wish to create alias which may be used by everyone, you need to
perform the same process to the /etc/bashrc file, add the following lines to the
/etc/bashrc file:

alias lsl='ls –l' (no spaces around “=”)
alias lsa='ls –la' lists all files and directories
alias lsd=‘ls –d’ lists only directories

HLUL09
© Dennis Rice

41 / 60

Chapter 9 – Data Manipulation Rev 54

alias cls=‘clear’ DOS command to clear the screen

After saving the file, log out and back in to make them effective.
You can enter an alias on the fly, only active during your present login

session by immediately issuing the alias=‘xxxx’ command. Remember to not
have spaces around the equal sign.

If you desire to remove an alias command, issue the reverse command:
$ unalias alias-command

9.47 Obtaining File Information
The File utility provides you with information of what type of file you are

working with. Three different attributes are tested – filesystem, magic number,
and language.

The syntax of the command is:
$ file filename

The attributes are:
Filesystem Directory, File, Link

Contents Character type
ASCII text
Binary
Executable
Data
Empty

Magic Number Checks to see if a file contains some form of format.
Language Checks to see if a file contains a specific character

type.

The best way to understand this utility is through the lab examples.

9.48 File Types 2
Previous discussion with files has been with files that held user information.

Recall that we previously stated that Unix and Linux treat everything as a file,
including hardware devices. Here we need to review additional file types.

9.48.1 Normal Files
In review, we have observed the following file types:

- Standard file carrying data
d Directory file, carrying a list of other files
l Link file, connecting two files together

9.48.2 Block Devices
Now we will expand the file types to include:

2 Linux Administration, A Beginner’s Guide, 2nd Ed, Steve Shah, Osborne McGraw-Hill
HLUL09
© Dennis Rice

42 / 60

Chapter 9 – Data Manipulation Rev 54

b Block device. This basically device drivers. The system transfers
a normal file (-, d, l) to a hard (floppy) drive. In this case, our
normal file is transferred to another file type.

c Character device. This is used to transfer data from a normal file
to an input / output device, such as a serial interface
(communications port or USB port). Here characters are
transferred between a normal file and an I/O device.

P Named Pipe. A named pipe allows for system inter-process
communications. It is a special file type that takes input from one
file type and passes it on to another file type. This type of file type
may be necessary when a file is not able to accept data input from
the stdin (keyboard) device.

9.48.3 Listing Block Devices Attributes
When we previously listed the attributes of a file we used the ls –l (ll) utility.

We still do, but the output is slightly different. Most often, block devices will be
found in the /dev directory.

$ ll /dev/hda
brw-rw- - - - 1 root disk 3, 0 Jan 1 2004 /dev/hda

This has a slightly different format than previously noted. Obviously it starts
with a “b”, indicating a block device. We then observe that it is owned by root,
but the group name is “disk”. When doing a listing of all “hda” devices one will
observe that drive “a” can support over 30 partitions, with the drive being device “
3, 0 ”. The first value is the major number and the second is the minor. In
review of the listings, one can learn that:

Primary Drive Interface
Secondary Drive Interface
SCSI Controller 1
SCSI Controller 2
Floppy Drive
ttyS Interface (Comm Port)

The minor number indicates the partition number in the case of a hard drive,
or a floppy density in the case of a floppy drive.

9.49 Midnight Commander
There is a command in Linux similar to an old DOS function developed by

Peter Norton that provided enhanced abilities to view the various files in a tree
structure. Today this format is provided in the Windows Explorer function, where
there are two windows, the left showing the directories and the right showing
directories (folders) and files within the specified directory.

This process is called midnight command, and is initiated with the
command:

$ mc

HLUL09
© Dennis Rice

43 / 60

Chapter 9 – Data Manipulation Rev 54

From within mc you can view the directory structure of your Linux system,
contents of directories, execute a file, and open text files for viewing.

The screen displays two separate screens – left and right. Each represents
an independent view of your location, that on startup show the same directory.
By default, you are located in the left hand screen, but can change to the right
hand screen by clicking the TAB key. You may switch back and forth using this
technique.

Using the arrow keys, you are able to move to the different directories / files.
After selecting a directory or file, you can utilize the Function Keys to perform
desired actions.

The menu at the bottom of the screen is for the Function Keys. These are
assigned at the top level as:

1. F1 Help
2. F2 Menu
3. F3 View
4. F4 Edit
5. F5 Copy
6. F6 Rename / Move
7. F7 Make Directory
8. F8 Delete
9. F9 Pull Down
10. F10 Quit

Sub menus may be available from several of the above, which will cause the
definition of the F-keys to change at the bottom of the screen.

9.50 DOS Mtools
One of the features of Linux and Unix is the ability to access and read the

various Windows file systems. The access of file systems that are part of a hard
drive will be covered at a latter time, but we often transfer files via a floppy drive.

To work with this lab, you will need a floppy disk formatted under a DOS
system.

Normally we need to “mount” a removable drive, such as a zip or cdrom drive
disk. DOS floppy disks do not need to be mounted, but may be accesses
through a special set of commands called “Mtools”. They are applicable in
general to any MS-DOS file system, but for this discussion we will be working
with floppy disks.

Thus we are able to manipulate a DOS system. Note that with these
commands we can create a directory and save files to it, but we are not able to
edit a file within a DOS directory – for this we must transfer the file to our Linux /
Unix system, edit it, then return it to the DOS system.

Several of the more used commands include:

9.50.1 mcopy Utility
To copy a file from a DOS disk to your hard drive, issue the command:

$ mcopy a:filename /path/filename or
$ mcopy a:filename filename (if in the desired directory)

HLUL09
© Dennis Rice

44 / 60

Chapter 9 – Data Manipulation Rev 54

To copy a file from Linux to a DOS floppy, issue the command
mcopy /Linux-path/filename a:/dos-path/filename

If the file on the DOS disk is at the top of the directory structure, then the dos-
path is not required. If you are located in the directory where you wish to place
the file, again the Linux-path is not required.

9.50.2 mdir Utility
To list the contents of a DOS floppy, you need to only issue the command:

$ mdir

Linux will automatically assume that you mean Floppy Drive a. If you should
have two floppy drives, then you will need to specify the drive.

9.50.3 mtype Utility
Like the less command, we are able to display the contents of a file that

resides on a floppy disk. We need to issue the command:
$ mtype /dos-path/filename

The following is a summary of most of the mtool commands. Your are not
able to read a DOS disk with the normal Unix / Linux commands.

A partial list of available commands includes:
m command DOS command Function
mattrib attrib changes attribute flags
mcd cd changes DOS directory
mcopy copy copies files from DOS to Linux
mdel del/ erase deletes a DOS file
mdir dir displays contents of DOS directory
mformat format formats a high density floppy disk
mlabel label writes a label to a floppy disk
mmd md / mkdir creates a DOS directory
mrd rd / rmdir deletes a DOS directory
mread copy copies files from DOS to Linux
mren ren / rename renames a DOS file
mtype type displays contents of a DOS file
mwrite copy copies a Linux file to DOS

The user should investigate the other commands.
Normally, these commands are most often used on a DOS floppy, but may

also be used on an attached DOS hard drive.
In general, the command syntax will be of the form;

$ mcommand filename / action

When using the any of these commands, refer to the appropriate man or info
pages for proper syntax.

HLUL09
© Dennis Rice

45 / 60

Chapter 9 – Data Manipulation Rev 54

9.51 Compression Techniques (Not Complete)
Linux offers a wide variety of compression techniques in order to make a file,

or a group of files smaller in size. Various algorithms are available, thus the
variety of techniques. Here we will review several of the more popular
techniques.

9.51.1 compress / uncompress:
Original Unix compression algorithm. Not highly supported as it was originally

patented. File extension is typically ‘.z’ .

9.51.2 gzip / gunzip:
Replaced compress that is patent free (open-source). Latest versions

support the compress algorithm. File extension is typically ‘.gz’ .
Gzip is not the same as the MS Windows zip format, although winzip is able

to uncompress ‘.gz’ files.
Syntax is:

$ gzip –[options] file(s) > gz-filename

Options (others exist):
-c compress
-d dcompress (same as gunzip)
-9 highest compression
-1 fastest compression (numeric one)
-l list details of the gzip file (lower case L)
-r recursive – compress all subdirectories and files below the

present directory

Note that in compressing the file, according to the man page, the original file
is deleted – but this was observed to be in error. Normal compression goes to
the stdout (screen) unless the redirect is specified.

Example:
$ gzip –c cover > cover.gz

9.51.3 zip / unzip:
A compression algorithm that is compatible with the PKWARE ZIP function or

WINZIP. One is able to add, expand, list, or test zip files.
Syntax is:

$ zip –[options] zip-filename files

Options (others exist):
-@ read input names from the stdin (keyboard)
-n numeric value, specifies compression value, 1= fastest, 9=

highest
-b path specify a path for temp files
-d delete entries in the zipped file
-e encrypt compression
-f replace changed files
-g grow, or append to an existing zipped file

HLUL09
© Dennis Rice

46 / 60

Chapter 9 – Data Manipulation Rev 54

zip is used to compress files, unzip is used to unzip the compressed file.
Example:

$ zip cover.zip cover

9.51.4 bzip2
bzip allows the compression of a file or files with block sorting.
Syntax is:

$ bzip2 –[options] file(s)

Options (others exist):
-n sets block size, 1= 100K, 9= 900K
-c compress to the stdout (monitor)
-d decompress
-k keep input files

Example:
bzip2 -c cover > cover.bz2

9.52 Backing Up Files (Not Complete)
One of the most important tasks that is most often neglected is the backing

up of our data. Originally all backups were made to a magnetic tape media,
being archived in their basic format without compression. (You might recall that
computer magnetic tape reels that were 12 inches in diameter.) Hence we have
a Tape Archive – or TAR.

Many files today are maintained in a TAR format. These files today may be
found on the Internet.

The biggest draw back to TAR as previously mentioned is that the files are
uncompressed. This limitation has subsequently been overcome by allowing an
option which provides compression using the gzip algorithm.

The general format of the command is:
$ tar optionsf archive-name.tar path/filename

9.54.1 tar Example3

TAR, or Tape Archiver, provides a means to archive files for backup or
transfer. Although it was originally designed to store data to a tape drive, it now
stores data to a hard drive. Here we will create a small TAR file and then
expand it back to it original set of files.

First we will create a small script file that will be used to create our tar files.
From the /labs directory, create the file /labs/tarbkup with the following
contents:

/etc/passwd
/etc/shadow You may create a file with
whatever
/etc/group contents you want.

3 Setting Up a Linux Internet Server; Coriolis – Visual Black Book; Tsuji, Watanabe; ISBN 1-57610-569-5
HLUL09
© Dennis Rice

47 / 60

Chapter 9 – Data Manipulation Rev 54

/etc/hosts
/etc/named.conf

Save the file and exit. Make sure you include the full path on each line for
the file you wish to save.

Now we wish to create our tar file, issue the command:
tar cvfzT /lab/etcbkup.tar.gz /lab/tarbkup

The tar command is one of the few that does not require the “ – ” in front of
the options list. From experience, it has been found that using the “ – ” may
cause the command to fail.

The options provide for the following:
c Creates a new archive file
v Displays archive process (verbose)
f Specifies the archive filename (etcbkup.tar.gz)
p Preserve file permissions
z Compress the total file for optimum storage
T Get files to archive from specified file (tarbkup)

Additional options include:
A Concatenate, or append tar files to an archive
d Find the differences between two archives
r Append files to the end of an existing archive
t List the contents of an existing archive
u Update only those files in an archive that are newer that the one in

the archive
j Use the bzip2 utility for compression of an archive
k Keep old files, do not overwrite existing files from the archive
N Include files in an archive that were created after specified date
v Provide a verbose output of the command process
Z Use the compress utility for compression of an archive

Several items must be noted. First we need to specify the f option and the
file name, otherwise tar will attempt to store the file on the tape drive – which
does not exist. We created a new file /lab/etcbkup.tar.gz using the script list file
/lab/tarbkup. The .tar tells us that we used the tar process, and that the file is
compressed, indicated by the .gz. The .tar and .gz are only necessary for the
user, as the process does not care what the file name is (it’s a human thing).
Second, the fully qualified path name must be specified for both files.

Now lets restore (unpack) our file. Issue the command:
$ tar xvpfz etcbkup.tar.gz

where:
x Extract files from the tar file
p Preserve file permissions

Other options are the same

If your original files should become corrupted, you will now be able to copy
them back to their original location using the cp command.
HLUL09
© Dennis Rice

48 / 60

Chapter 9 – Data Manipulation Rev 54

To list the contents of an archive, issue the command:
$ tar tf etcbkup.tar
etc/passwd
etc/shadow
etc/group
etc/group
etc/hosts

$ tar tvf etcbkup.tar
-rw-r--r-- root/root 1124 2006-06-30 18:53:27 etc/passwd
-rw-r----- root/shadow 577 2006-07-01 08:48:16 etc/shadow
-rw-r--r-- root/root 475 2006-06-30 18:30:04 etc/group
-rw-r--r-- root/root 475 2006-06-30 18:30:04 etc/group
-rw-r--r-- root/root 681 2006-06-30 18:56:18 etc/hosts

Additional options exist to the tar command. Check out the man tar manual
page to review what is available.

9.53 Quotation Marks (Not Complete)
If you look at your keyboard closely, you will find three different types of

quotation marks. In the Unix / Linux world, these may have different meanings,
depending where and how they are used.

The three quotation marks are:
Single Quote ‘ (immediately left of ENTER key – lower

case)
Double Quote “ (immediately left of ENTER key – upper

case)
Back Quote or Back Tic ` (immediately left of 1 key – lower case)

When working at the Command Line Interface, there are generally no
difference between the Single Quote and Double Quote. Differences become
significant when we enter into the various programming languages. Bash, Perl,
Python and other languages interpret variables differently when using either the
Single of Double quote. For example:

$OS = “Linux”
echo “The OS is $OS.” -> The OS is Linux.
echo ‘The OS is $OS.’ -> The OS is $OS.

The Back quote is used to execute a command within another command. If
you wish to learn to do scripting, you need to do additional self-study.

A simple rule of implementation of quotes is:
Single quotes are used inside of double quotes.

9.54 Suspend Execution
On occasion it might be necessary to temporarily suspend the operation of

the system. The command to do this is sleep. This pauses execution of the
shell for the number of specified seconds. The command is:
HLUL09
© Dennis Rice

49 / 60

Chapter 9 – Data Manipulation Rev 54

$ sleep n
where n is in seconds.

9.55 System Uptime
While running various applications, it is sometimes advantages to learn how

long a system has been operational. To learn this, issue the command:
$ uptime
 10:43pm up 4 days 11:07, 1 user, load average: 0.00, 0.00, 0.00

This command will typically be used within a script.

9.56 Commands Used in this Chapter
alias Creates a new command for another command
at Utility to issue a command at a later time
batch Runs a file of other commands
bzip2 Compresses or uncompresses a file
cal Displays a calendar
cat Displays the contents of a file
cd Changes directory
chfn Allows one to modify the comment portion of a user in the

passwd file
chmod Utility to change the permissions of a file
cksum Creates a hash of a file for verification purposes
cmp Compares two files character by character, listing the
differences
colrm Removes columns from a file
column Creates columns from data
comm Displays the difference of two files
compress Compresses a file
cron Utility to issue a command on a periodic basis
crontab Utility for configuring a cron process
csplit Splits a file based on the specified number of lines
cut Extracts a specified range of characters from a file
date Displays or sets the system date and clock
dc Application to provide a precision calculator
diff Compares two files line by line, listing the differences
dir Displays the contents of a directory
echo Displays on the stdout (monitor) the specified message
enscript Converts a text file to postscript format
expand Converts tabs to spaces
export Writes a value to a user's environment
factors Displays the prime factors of a number
fc Lists a portion of the history file
file Displays the file type
finger Displays the comments portion of a user from the passwd

file

HLUL09
© Dennis Rice

50 / 60

Chapter 9 – Data Manipulation Rev 54

fc Displays a limited portion of the history file
fold Provides a means to word-wrap lines of a file
gpasswd Creates a group password
grep Searches a file or directory for a string
gunzip Uncompresses a file
gzip Compresses a file
history Displays the last 1000 commands issued
id Displays the user's id value
info Displays a commands properties
ispell Displays mis-spelled words one by one and suggests
correction
job Displays the number for the jobs in process
login Creates a new login screen
logname Displays the user login name
look Looks up word in dictionary for spelling verification
ls Displays the contents of a directory
mattrib DOS floppy display attributes command
mcd DOS floppy change directory command
mc Midnight Commander utility
mcopy DOS floppy copy command
mdel DOS floppy delete file command
mdir DOS floppy display directory contents command
md5sum Creates a hash of a file for verification purposes
merge Combines multiple files together
mev Detects mouse movement
mformat DOS floppy format command
mlabel DOS floppy to write a label to a floppy disk
mmd DOS floppy to create a new directory
mrd DOS floppy to remove an existing directory
mread DOS floppy to display a file's contents
mren DOS floppy rename a file or directory
mtype DOS floppy to display file's contents
mwrite DOS floppy to write information to a floppy
mzip Utility to extract a zip disk from the zip drive
nano Line editor
newgrp Creates a new group for users
nice Changes the priority of an application
nl Numbers the lines of a file
paste Combines two files side by side
pico Line editor
pipe Directs the output from one command into another
pr
rev Displays the text in reverse order
script Logs to a file the output of a command
sequence
sleep Pauses the processing of a command for a specified period

of time
sort Sorts a list of items

HLUL09
© Dennis Rice

51 / 60

Chapter 9 – Data Manipulation Rev 54

source
spell Displays mis-spelled words in a file
split Splits a file based on length
ssh Secure Shell utility
statserial Displays the status of the serial pins of a serial port
TAB When used while entering a file name, completes the file
name
tail Displays the last 10 lines of a file
tar Archives a file for storage
tee Allows command output to be both saved to a file and output

to the stdout (monitor)
test Provides a means to test various conditions
tiffdump Displays data regarding a tiff image file
tiffinfo Displays information about a tiff image file
time Displays the amount of time that an application takes
top Displays the top 10 lines of a file
tty Displays the terminal that one is logged onto
unalias Removes an alias command
uname Displays the attributes of a system
uncompress Uncompresses a file
usermod Allows one to modify attributes of a user
unzip Uncompresses a file
uptime Displays the time a system has been operational
wc Counts the number of characters, lines and words in a file
xhost Allows one to remote an X application to a remote terminal
vi Line editor
zip Compresses a file

9.57 Chapter Review Questions

1. You need to check the spelling of a word. What command is
issued?
a. spell
b. dict
c. look
d. check

2. A task needs to be issued just once at a specific time. What
command is used?
a. at
b. cron
c. issue
d. run

HLUL09
© Dennis Rice

52 / 60

Chapter 9 – Data Manipulation Rev 54

3. You wish to archive and compress using gzip a file, what command
is used?
a. compress
b. tar
c. tar -cvzf
d. zip

4. You observe that the system time is not correct. What command is
issued to correct it?
a. time
b. day
c. year
d. date

5. A downloaded file needs to be verified using the md5 check. What
command is used?
a. cksum
b. crc
c. md5sum
d. verify

6. You need to split a file by length so that it will pass through an
ISP's email system. What command is used?
a. divide
b. length
c. sep
d. split

7. During a telnet session you wish to record all commands and
responses. What command is used?
a. telnet | script
b. telnet | script filename
c. telnet | tee
d. telnet | tee filename

8. Within a script, you need to display a calendar for a specific month
and year. What command is issued?
a. cal ‘year’
b. cal ‘month’
c. cal ‘month’ ‘year’
d. cal

9. You want to have fun with a friend by sending a file that is
reversed. What command is used?
a. back
b. galello
c. invert
d. rev

HLUL09
© Dennis Rice

53 / 60

Chapter 9 – Data Manipulation Rev 54

10. You need to capture the year to a variable within a script. What
command is issued?
a. day + % y
b. date + % y
c. day %y
d. date %y

11. You need to check a file for just spelling. What command is used?
a. ispell
b. look
c. spell
d. ten

12. You have generated a report from a database and need to extract
characters in columns 13 through 27. What command is used?
a. column –b 13 – 27
b. col –b 13 – 27
c. cut –b 13 – 27
d. pull –b 13 – 27

13. The output of a command must be directed to both a file and the
screen. What command is used?
a. log
b. recall
c. script
d. tee

14. You are continually issuing a rather long command, what could be
done to improve the process?
a. create a command
b. create a name
c. create a process
d. create an alias

15. You have written a script and need to know how many lines are in
the file. What command is issued?
a. lines
b. wc
c. wc –l
d. wc –s

16. The lines of a file need to be numbered, including blank lines.
What command is used?
a. line
b. nl
c. nl -ba
d. number

HLUL09
© Dennis Rice

54 / 60

Chapter 9 – Data Manipulation Rev 54

17. You wish to check a file for spelling, along with suggestions. What
command is used?
a. fix
b. ispell
c. look
d. spell

18. You need to display the contents of a variable to the stdout. What
command is issued?
a. echo VARIABLE
b. echo $Variable
c. echo $VARIABLE
d. echo

19. Your math teacher wants to know the prime numbers of another
number. What command is used?
a. base
b. factor
c. number
d. prime

20. A task needs to be issued on a periodic basis. What command is
used?
a. at
b. cron
c. run
d. timer

21. You have just received a list of data from a device and need to sort
the data. What command is issued?
a. sort
b. order
c. list
d. ls –o

22. A file is created to contain a list of commands. What command is
used to run the file of commands?
a. batch
b. execute
c. run
d. source

23. You need to search a file for miss-spelled words and have
suggestions made for corrections. What command is issued?
a. spell
b. look
c. ispell
d. correct

HLUL09
© Dennis Rice

55 / 60

Chapter 9 – Data Manipulation Rev 54

24. In writing a script, you need to test a condition. What command is
used?
a. check
b. make
c. query
d. test

25. You wish to login under a different name. What command is used?
a. exit
b. login
c. logon
d. open

26. What set of commands allow one to directly access a DOS
formatted floppy drive?
a. DOStools
b. mtools
c. Wintools
d. Xtools

27. You have received a list of data and need to format it into columns.
What command is issued?
a. cal
b. col
c. column
d. column 4

28. You need to check out the spelling of different words. What
command is used?
a. dictionary
b. ispell
c. look
d. spell

29. You have logged into a remote system and need to know which
terminal you are on. What command is used?
a. console
b. term
c. terminal
d. tty

30. You need to research a word from the system dictionary. What
command is issued?
a. spell
b. list
c. look
d. ispell

31. You run a configuration script for configuring an application, what
utility is used to save the answer / question process?
a. listen
b. script
c. tee
d. write

HLUL09
© Dennis Rice

56 / 60

Chapter 9 – Data Manipulation Rev 54

32. What command is used to modify an application's priority?
a. level
b. nice
c. priority
d. set

33. Which command provides a report of the first error found when
comparing two files?
a. cmp
b. compare
c. diff
d. rpt

34. You have two files where you need to combine the data side by
side. What command is issued?
a. link file1 file2 > file3
b. tie file1 file2 > file3
c. sbs file1 file2 > file3
d. paste file1 file2 > file3

HLUL09
© Dennis Rice

57 / 60

Chapter 9 – Data Manipulation Rev 54

Chapter Index
A

Alias Utility 41
At Utility 14, 37
Atq Utility 38

B
Backing up Files 47
Backtick 4
Batch Utility 14
Block Device Attributes 43
Block Devices 42
Bzip2 Utility 47

C
Cal Utility 10
Changing Group ID 15
Chfn Utility 35
Cksum Utility 15
Cmp Utility 5
Colrm Utility 17
Column Manipulation 17
Column Utility 17
Combining Files Together 8
Comm Utility 10
Command Priority 23
Comparing File Contents 5
Comparing Left & Right Files 10
Completing a Filename using the TAB

Key 36
Compress / uncompress Utility 46
Compression Techniques 46
Controlling ZIP Disk 18
Converting Tabs to Spaces 18
Converting Text File to Postscript 19
Counting Words, Lines, and

Characters 7
Creating Columns 17
Cron Utility 38
Csplit Utility 28
Cut Utility 7

D
Date Utility 9
Dc Utility 24
Detecting Mouse Clicks 22
Dictionary 12
Diff Utility 6
Differences Between Two Files 6

Dir Utility 21
Displaying a Calendar 10
Displaying a Date 9
Displaying a Message to the Monitor 4
Displaying and Setting the System

Date 9
Displaying Last N Commands 19
Displaying Sequence of Numbers 27
DOS Mtools 44

E
Echo Utility 4
Enscript Utility 19
Expand Utility 18
Extracting Data from a File 7

F
Factor Utility 26
Fc Utility 19, 36
File

user/.bash_profile 41
/etc/crontab 38
/usr/share/dict/words 12
/var/spool/cron/username 40

File Types 42
File Utility 42
File Verification 15
Finger Utility 35
Fold Utility 34
Format a File for Printing 24

G
Gpasswd Utility 20
Group Password 20
Gzip / gunzip Utility 46

H
History Utility 36

I
Id Utility 34
Ispell Utility 13

L
Learning Login Name 21
Logging in as Another User 21
Logging Session Commands 14
Login Utility 21
Logname Utility 21
Look Utility 12

M
HLUL09
© Dennis Rice

58 / 60

Chapter 9 – Data Manipulation Rev 54

Mc Utility 43
Mcopy Utility 44
Mdir Utility 45
Merge Utility 21
Mev Utility 22
Midnight Commander 43
Mtool Utilities 44
Mtype Utility 45
Mzip Utility 18

N
Newgrp Utility 15
Nice Utility 23
Nl Utility 23
Normal Files 42
Numbering File Lines 23

O
OpenSSL 16

P
Paste Utility 8
Ping Utility 39
Pipe Utility 36
Pr Utility 24
Precision Calculator 24
Prime Factors of a Number 26

Q
Quotation Marks 49

R
Redirector

Input 18
Removing Columns 17
Rev Utility 26
Reverse Polish Notation 24
Reversing Text Output 26
RPN 24

S
Script Utility 14
Seq Utility 27
Serial Port Statistics 27
Setting the Time and Date 9
Sleep Utility 50
Sort Utility 5
Sorting a File 5
Source Utility 15
Spell Utility 12
Split Utility 30
Splitting a File 28
Statserial Utility 27
Suspend Execution 49

System Uptime 50
T

TAB key 36
Tar Utility 47
Tee Utility 13
Terminal Connectivity 31
Test Utility 32
Testing a Condition 32
TIFF Image Information 33
Tiffdump Utility 33
Time Utility 34
Top Utility 36
Tty Utility 31

U
Unalias Utility 42
Unattended Jobs using at 37
Unattended Periodic Jobs using cron

38
Uncompress Utility 46
Uptime Utility 50
User Dictionary Utilities 12
User Identity Information 35
userid Utility 34
Usermod Utility 35
Utility

alias 41
at 14, 37
at -q 38
atq 38
batch 14
bzip2 47
cal 10
chfn 35
chksum 15
cmp 5
colrm 17
column 17
comm 10
compress 46
cron 38
csplit 28
cut 7
date 9
dc 24
dir 21
echo 4
enscript 19
expand 18

HLUL09
© Dennis Rice

59 / 60

Chapter 9 – Data Manipulation Rev 54

factor 26
fc 19, 36
file 42
finger 35
fold 34
gpasswd 20
gzip 46
history 36
id 34
ispell 13
login 21
logname 21
look 12
mattrib 45
mc 43
mcd 45
mcopy 44p.
md5sum 16
Md5sum Utility 16
mdel 45
mdir 45
merge 21
mev 22
mformat 45
mlabel 45
mmd 45
mrd 45
mread 45
mren 45
mtype 45
mwrite 45
mzip 18
newgrp 15
nice 23
nl 23

OpenSSL 16
paste 8
Ping 39
pipe 36
pr24
rev 26
script 14
seq 27
sleep 50
Sort 5
source 15
spell 12
split 30
statserial 27
tar 47
tee 13
test 32
tiffdump 33
tiffinfo 33
time 34
top 36
tty 31
unalias 42
uncompress 46
uptime 50
usermod 35
wc 7
zip 46

W
Wc Utility 7
Words Dictionary 12
Wordwrapping Text 34

Z
Zip / unzip Utility 46

HLUL09
© Dennis Rice

60 / 60

	Data Manipulation
	9.1	Displaying a Message to the Monitor
	9.2	Sorting a File
	9.3	Comparing File Contents
	9.4	Differences Between Two Files
	9.5	Counting Words, Lines, and Characters
	9.6	Extracting Data from a File
	9.7	Combining Files Together
	$ paste file1 file2
	$ paste Name-File Residence-File

	9.8	Displaying and Setting the System Date
	9.8.1	Displaying a Date
	9.8.2	Setting the Time and Date

	9.9	Displaying a Calendar
	9.10	Comparing Left and Right Files
	9.11	User Dictionary Utilities
	9.11.1	look
	9.11.2	spell
	9.11.3	ispell

	9.12	Multiple Outputs from a Command
	9.12.1	tee Utility
	9.12.2	Logging a Session’s Commands

	9.13	Batched Commands
	9.14	Changing GroupID
	9.15	File Verification
	9.15.1	cksum
	9.15.2	md5sum
	9.15.3	sha1sum

	9.16	Column Manipulation
	9.16.1	Creating Columns from Data
	9.16.2	Removing Columns from Data

	9.17	Controlling a ZIP Drive
	9.18	Converting Tabs to Spaces
	9.19	Converting a Text File to Postscript
	9.20	Displaying the Last N Issued Commands
	9.21	Group Password
	9.22	Learning the Login Name
	9.23	Listing Directory Contents with DIR
	9.24	Logging in as Another User
	9.25	Merging 3 Files
	9.26	Detecting Mouse Clicks
	9.27	Modifying a Command’s Priority
	9.28	Numbering the Lines of a File
	9.29	Format a File for Printing
	9.31	Prime Factors of a Number
	9.32	Reversing Text Output
	9.33	Displaying a Sequence of Numbers
	9.34	Serial Port Statistics
	9.35	Splitting a File
	9.35.1	Splitting a File by Pattern
	9.35.2	Spitting a File by Length

	9.36	Terminal Connectivity
	9.37	Testing a Condition
	9.38	TIFF Image Information
	9.38.1	TIFF Information
	9.38.2	TIFFDUMP

	9.39	Utility Time
	9.40	Wordwrapping Text
	9.41	Determining the User ID
	9.42	User Identity Information
	9.43	History of Past Commands
	9.43.1	Listing the Previous Commands using history
	9.43.2	Listing Previous Commands using fc
	9.43.3	Completing a Filename using the TAB Key

	9.44	Unattended Jobs using at
	9.45	Unattended Periodic Jobs using cron
	9.46	Creating Your Own Command
	9.47	Obtaining File Information
	9.48	File Types 2
	9.48.1	Normal Files
	9.48.2	Block Devices
	9.48.3	Listing Block Devices Attributes

	9.49	Midnight Commander
	9.50	DOS Mtools
	9.50.1	mcopy Utility
	9.50.2	mdir Utility
	9.50.3	mtype Utility

	9.51	Compression Techniques 	(Not Complete)
	9.51.1	compress / uncompress:
	9.51.2	gzip / gunzip:
	9.51.3	zip / unzip:
	9.51.4	bzip2
	9.54.1	tar Example3

	9.53	Quotation Marks 		(Not Complete)
	9.54	Suspend Execution
	9.55	System Uptime
	9.56	Commands Used in this Chapter
	9.57	Chapter Review Questions

