
Chapter 15 – System Security Rev 36

Chapter 15

System Security

This chapter introduces basic security issues of the Linux system. This provides
the user with a foundation of the ability to prevent unwanted remote users
access to their system. More advanced topics exist which the administrator must
research.

Concepts Learned in this Chapter
➢ Data Encryption
➢ Secure Access
➢ Tracking Data modification
➢ System user security

HLUL15
© Dennis Rice

1 / 32

Chapter 15 – System Security Rev 36

Table of Contents
System Security... 1

15.1 Password Security ... 4
15.2 Data Encryption of Files, ... 4

15.2.1 A Little Theory on Encryption... 4
15.2.2 GPG Encryption ... 6
15.2.3 Creating a Symmetric Encryption File .. 9
15.2.4 Digital Signature... 10
15.2.5 Other Options... 11
15.2.6 These Commands Are Too Long ... 11
15.2.6 Examples of Commands.. 12

15.3 Secure Shell (Not Complete).. 13
15.3.1 Step by Step Procedure... 13
15.3.2 Sneaker Net... 15
15.3.3 Email Attachment ... 15
15.3.4 SSH Connection .. 15
15.3.5 Logging onto Remote Host .. 15
15.3.6 Enhancing your logon on your Remote Access 16

15.4 Secure Copy (scp) .. 16
15.5 Secure File Transfer (sftp) .. 16
15.6 Improved Sudo Security.. 16
15.7 OpenSSL... 19
15.8 Tripwire (Initial Thoughts) .. 19
15.9 Secure TTY ... 19

15.10.1 Why Use PAM ... 21
15.10.2 Overview of How it Works .. 21
15.10.3 Configuration Files .. 21
15.10.4 Authentication Modules ... 22
15.10.5 Module Format.. 22

15.10.5.1 Module-Type ... 22
15.10.5.2 Control-Flag .. 22
15.10.5.3 Test-File .. 23
15.10.5.4 Arguments.. 23

15.10.6 Examples of the Test Files include.. 23
15.10.7 Discussion of Example... 24
15.10.8 Testing for Conditions.. 25

15.11 Snort ... 26
15.12 SATAN and SAINT.. 26
15.13 Chroot... 26
15.14 Port Map.. 26
15.15 Controlling Remote Access... 26

15.15.1 Access Control... 27
15.15.2 Access Control Rules... 27
15.15.3 Rule Patterns... 27
15.15.4 Wildcard Matches.. 28
15.15.5 Operators... 28

HLUL15
© Dennis Rice

2 / 32

Chapter 15 – System Security Rev 36

15.15.6 Shell Commands.. 28
15.15.7 Server Endpoint Patterns... 29
15.15.8 Detecting Address Spoofing Attacks.. 29
15.15.9 Examples... 29

15.15.9.1 Mostly Closed... 29
15.15.9.2 Mostly Open.. 29

15.15.10 Diagnostics.. 30
15.16 TCP Wrappers.. 30
15.17 Commands Used in this Chapter.. 30
15.18 Chapter Review Questions.. 30

HLUL15
© Dennis Rice

3 / 32

Chapter 15 – System Security Rev 36

15.1 Password Security
We have made the issue multiple times previously, but it must be

emphasized that a user’s password is the first line of defense. Do not
compromise your password.

15.2 Data Encryption of Files 1 , 2
In order to insure privacy of information on the Internet, it may be a wise idea

to encrypt the files – even the email that we wish to send across the Internet.
Sometime we may find it necessary to encrypt the information that we maintain
on our own system.

15.2.1 A Little Theory on Encryption
All through the ages, many various attempts have been made to maintain

secrecy of information. Most were successful, and a few very important
encryption techniques failed.

Encryption of analog information was a necessity in the early 1900’s through
World War II, but after the war we entered the digital age. The method of
encryption of an analog signal was quite involved – but the encryption of digital
information is really quite simple.

Our first requirement is to understand another type of Boolean Algebra. We
create a special truth table to demonstrate what we need:

Input
A

Input
B

Outpu
t

0 0 0
0 1 1
1 0 1
1 1 0

This type of table is called an Exclusive OR, where the only time you obtain a
positive output is when you have one and only one valid input.

Now if we have some information (in digital format) such as:
1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1

Now we make up a key, say one that is 10 bits long, such as:
1 1 1 0 1 1 0 1 0 0

We now perform an Exclusive OR between the information and the key,
repeating the key as necessary.

1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 original data
1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 key x 3

1 David Scribner, member North Texas Linux Users Group (www.ntlug.org),
www.bigfoot.com/~dscribner (a special thanks for helping me learn)
2 gnupg.org: GPG Privacy Handbook and GPG Mini HowTo

HLUL15
© Dennis Rice

4 / 32

http://www.ntlug.org/
http://www.bigfoot.com/~dscribner

Chapter 15 – System Security Rev 36

And get:
0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 encrypted data

This is the data string that is actually transmitted across the network. At the
receiving end we need to decrypt the received bits in order to understand the
original data. We do this by again performing an Exclusive OR on the received
data, thus:

0 0 1 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 received data
1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 key x 3

And get:
1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 decrypted data

Comparing to the original data:
1 1 0 0 1 0 1 0 1 1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 0 1 1 1 original data

We see that we now have our original information back.
Now this is a very simple case. Our key is only 10 bits long. What if we

made the key 56, 64, 128, or 1024 or even 2048 bits long? Then we would have
a key that would be much more difficult to figure out.

Other algorithms exist, such as the “Caesar’s Cipher” and “ROT13”, but these
are beyond the scope of this discussion.

Now comes the case where we need to transmit the key to the party that
needs to decrypt our message. Lets say User A wants to transmit an encrypted
message to User B. User A must have the encryption key in order to encrypt the
message. User B must also have the key in order to decrypt the message. This
leads to a situation where there are at least two places where the key may be
stolen.

 + =

 + =

In order for User B to decrypt the message, he must have the key. He must
either be given the key prior to going on his mission, or have it transmitted to
him, which might subject the key to being found out by the party that we are
attempting to keep the information from. This form of encryption is referred to as
symmetric or conventional encryption.

Another technique in encryption is to establish a double set of keys. The first
one is called a public key and is made available to anyone who wishes to send
an encrypted message to you. When you create a public key, you also create a
secret key, and this is used to decrypt the publicly encrypted message. Thus
one does not have to publish their secret key. Only the user holding the secret
key is able to decrypt the message. The secret key is also referred to as the
“Private Key”.

HLUL15
© Dennis Rice

5 / 32

Original
Message

Key Encrypted
Message

Encrypted
Message

Key Original
Message

Chapter 15 – System Security Rev 36

Today, there are two major encryption tools for encrypting messages. Both
of them use the double key method. The difference is that the first, “Pretty
Good Privacy (PGP)” is restricted due to legal issues. The second is “GNU
Privacy Guard (GPG)” and is open source and available for public use – and it
is FREE. (For some this is the only justification.) GPG uses the same
encryption algorithm as PGP, but does not use the same software code in order
to not violate any license. Philip Zimmerman originated the PGP algorithm and
later made it as an open standard, thus allowing others to develop the process
(specifically GNUPG.org).

PGP includes several additional features that GPG does not. GUNPG has
been developed under the Unix philosophy of “doing one thing, and doing it well”.
This means that if one desires additional features (‘bell and whistles’), you will
have to utilize other front ends, such as GPA (GNU Privacy Assistant), which
perform other features, leaving the encryption process to GPG.

The rest of this lab will focus on the GPG encryption process.

15.2.2 GPG Encryption
GPG comes with Linux as a default installation. One only needs to run it in

order to make it active. To activate, follow the following process:
1. Issue the command:

gpg – – gen-key
2. This creates the $HOME / .gnupg directory (first time only) and

exits.
3. Again issue the command:

gpg – – gen-key
4. The file secring.gpg is created, this is the secret decryption key

(after answering the following questions).
5. The file pubring.gpg is created, this is the public encryption key

(after answering the following questions).
6. Select key type:

1. DSA and ElGamal (default)
2. DSA (sign only)
3. ElGamal (sign and encrypt)
> select the default value normally

7. Specify key size:
1. 1024 bits (default)
2. minimum 768 bits
3. maximum 2048 bits

8. Expiration date:
1. Does not expire 0
2. Days n
3. Weeks nw
4. Months nm
5. Years ny
> for a starter, and learning, we should select 0

HLUL15
© Dennis Rice

6 / 32

Chapter 15 – System Security Rev 36

9. Supply the user information:
1. Real Name
2. Email Address
3. Comment (optional)

10. Supply a Passphrase:
This is a sentence that you can remember and that no one else
can guess. After you type it in, it will generally not be long enough,
so you will have to add some more random key strokes / mouse
movements to complete the full key. For this discussion, lets make
the passphrase “Linux GPG encryption”.

11. The above two keys are now completed and are stored in the
.gnupg directory. Every user on a system can generate their own
key set, which is stored in their respective home directory.

If you issue the command:
gpg - - list-keys

You will observe something like:
pub 1024D / 420D7X5Z 2002-08-15 usera (prof) prof@school.edu
sub 1024g / X2m1234

where
pub public key
sub secret key
1024 encryption key size value (number of bits)
D DSA encryption
g ElGamal signing key
420D7X5Z key ID
2002.8.15 date key created (Aug 15, 2002)
usera user’s name
(prof) user’s comment
prof@school.edu user’s email address

Now you want to have your associate send you a private message, you need
to send him your public key that he then uses to encrypt the message. Your
associate will then transmit the encrypted message to you, which you will then be
able to decrypt using your secret key.

When you have created your public key, you commonly put it on your web
server so that anyone who wishes to send you an encrypted message may
download it. After they have your public key, they add it to their public keyring.
This keyring may contain just a few, or several hundred public encryption keys –
one for each individual that you wishes to send a message to.

There are a large number of options available when using gpg. The following
sets an example of how one might proceed with the encryption and decryption of
a message.

User A, needs to receive an encrypted file.
Creates public and secret keys.

gpg -- gen-key

HLUL15
© Dennis Rice

7 / 32

mailto:prof@school.edu
mailto:prof@school.edu

Chapter 15 – System Security Rev 36

Now we need to export the key into an ASCII format:
gpg -- export -- armor --output opkey.asc

This creates an ASCII file (armor option) of the key that may be
transmitted across the Internet with no problems, and names it
“opkey.asc”. It is now published on the web site.

This would export all of your public keys. If we have only our own, it would be
acceptable, but we normally only desire to export our own, so we issue the
alternative command:

gpg -- export 420D7X5Z --armor --output opkey

The key ID identifies which public key is to be extracted. You may also
identify the key by using the user name or email address.

User B, retrieves User A public key.
Issues the command to merge the UserA key to their public keyring.

gpg -- import opkey.asc
Verifies that the key is available on the public keyring by issuing the
command:

gpg -- list-keys
Where we will see that one of the keys is the one from UserA. The output
will be something like:

pub 1024D/309E5B2C 2002-09-22 John Doe (student)
<jdoe@isp.com
sub 1024g/D9F59876 2002-09-22

pub 1024D/420D7X5Z 2002-08-15 usera (prof)
<prof@school.edu>
sub 1024g/B7C94729 2002-09-22

User B now encrypts the file using UserA’s public key, issuing the
command:

gpg --encrypt --recipient usera {encrypted-file-name} or
gpg –e –r usera {encrypted-file-name}
e.g. gpg –e –r prof jobstat

This produces an encrypted ASCII text file called {encrypted-file-
name}.gpg (jobstat.gpg) that can be transmitted over the Internet using
usera’s (prof) public key.

User B now attaches the encrypted message to an email to User A.

User A receives the encrypted message from User B. To read the file, issue
the command:

gpg --decrypt ofile.gpg
e.g. gpg --decrypt jobstat

HLUL15
© Dennis Rice

8 / 32

Chapter 15 – System Security Rev 36

Our output is:
You need a passphrase to unlock the secret key for user “usera
(prof) prof@school.edu” 1024 bit ELG-E key, ID EF7473B, created
2002-08-15 (main key ID 420D7X5Z)

Enter passphrase: Linux GPG encryption (not visible)

We now have the decrypted file efile on our system screen, and we can read
it. If we wish to save the file, use the command:

gpg --decrypt ofile.gpg --output dfile.txt
e.g. gpg --decrypt jobstat.gpg --output jobstatus.txt

Now we want to add a little more security to our file than just the encryption.
We want to digitally sign it in order to prove that we actually transmitted it. This
is kind of like adding a Cyclic Redundancy Check (CRC) to the file – but more
powerful.

As the sender, we can add our signature to the encryption by issuing the
command:

gpg --encrypt --sign --recipient usera --armor ofile
Enter passphrase: Userb passphrase

This adds the originator’s digital signature to the encrypted file. This is not
additional encryption, but it does add additional data that insures that we are the
originator of the document. On decryption, we will get the following:

You need a passphrase to unlock the secret key for user “usera
(prof) prof@school.edu” 1024 bit ELG-E key, ID EF7473B, created
2002-08-15 (main key ID 420D7X5Z)

Enter passphrase: Linux GPG encryption (not visible)

gpg: Signature made Mon 23 Sep 2002 2:05 PM CDT using DSA key
ID 0C409498

gpg: Good signature from John Doe (student),
jdoe@isp.com>

15.2.3 Creating a Symmetric Encryption File
Sometimes you might desire to encrypt sensitive data on your own computer,

such as a file that you keep your passwords in. You do not intend to send it to
anyone, but it sure is hard remembering all of those different passwords. To
create a symmetric encryption, issue the command:

gpg --symmetric filename

This will generate the file ‘filename.gpg’. For additional security, you might
want to make the passphrase different from that used for the asymmetric
passphrase. In fact this is a good idea.

HLUL15
© Dennis Rice

9 / 32

mailto:prof@school.edu
mailto:prof@school.edu

Chapter 15 – System Security Rev 36

15.2.4 Digital Signature
It is often convenient to Digitally Sign a document, rather than fully encrypt it.

There are two options for creating a digitally signed document, compressed and
clear signed.

Digital signing works in a reverse manner to normal encryption. Whereas the
originator of a document wants to encrypt his document by using your public key
and you decrypt it using your private key, when using digital signature, you the
originator use your private key and the recipient uses your public key. Note that
the recipient can only verify that the signature is valid, since the original message
is not encrypted.

Lets set up an example of creating a message that is to be signed. For our
example we will use a very simple text document:

simple.txt
Now is the time for all students to work hard.

Since we previously created our public and private keys, they will be used to
digitally sign the document. This procedure is as follows:

$ gpg --output simple.sig --sign simple.txt

You need a passphrase to unlock the secret key for
user: "Dennis Rice (da Prof) <drice@dal.devry.edu>"
1024-bit DSA key, ID 677FD40F, created 2004-06-02

Enter passphrase: xxxx your-passphrase xxxx

The outputted file is the following:
$ cat simple.sig
£}WqfnANª^IEÃ¾À÷~ùå
Å
%©
%¹©
iùE
99

The file is not encrypted – but it is compressed.
If we want to output a file in a clear text mode, then we use a slightly different

command:
$ gpg --clearsign simple.txt

You need a passphrase to unlock the secret key for
user: "Dennis Rice (da Prof) <drice@dal.devry.edu>"
1024-bit DSA key, ID 677FD40F, created 2004-06-02

Enter passphrase: xxxx your-passphrase xxxx

The outputted file is the following:
$ cat simple.txt.asc

HLUL15
© Dennis Rice

10 / 32

Chapter 15 – System Security Rev 36

-----BEGIN PGP SIGNED MESSAGE-----
Hash: SHA1

Now is the time for all students to work hard.
-----BEGIN PGP SIGNATURE-----
Version: GnuPG v1.0.6 (GNU/Linux)
Comment: For info see http://www.gnupg.org

iD8DBQFAvlOpLRGJjmd/1A8RAh8pAKCE1N+w6KyDTRxh97kHhZtcD
PRzvQCeLMb/
WhEms45Xp/YQ4rt6jZXd1pg=
=1Dlj
-----END PGP SIGNATURE-----

The above message with the signature is the one that is transmitted over the
Internet. The file is normally sent as an attachment.

Finally, we need to verify that the received message is the one that was sent,
and has not been altered. The recipient would have the originator’s public key,
so they would issue the following command:

$ gpg --output simple.text --decrypt simple.txt.asc
gpg: Signature made Wed 02 Jun 2004 05:24:41 PM CDT using DSA
key ID 677FD40F
gpg: Good signature from "Dennis Rice (da Prof)
<drice@dal.devry.edu>"

The message has been transmitted and verified that it has not been
tampered with.

If the file had been tampered with, then the following output would be
observed:

$ gpg --output simple.text2 --decrypt simple.txt.asc
gpg: Signature made Wed 02 Jun 2004 05:24:41 PM CDT using DSA
key ID 677FD40F
gpg: BAD signature from "Dennis Rice (da Prof)
<drice@dal.devry.edu>"

So we can observe that the message received was bad and should not be
considered valid.

15.2.5 Other Options
Naturally many additional options exist, but these must be left to the reader to

research. For reference, two sites are recommended for additional reading:
www.bigfoot.com/~dscribner  download for reference documents.
www.gnupg.org  gnu Privacy Guard site - Documentation.

15.2.6 These Commands Are Too Long
Ok, it is a real pain to type in all of those commands. Well, some may be

abbreviated. The following is a list that may be used in an abbreviated format:

HLUL15
© Dennis Rice

11 / 32

http://www.gnupg.org/
http://www.bigfoot.com/~dscribner

Chapter 15 – System Security Rev 36

Full Command Short Command
--sign -s
--detach-sign -b
--encrypt -e
--symmetric -c
--recipient -r
--armor -a
--output -o
--verbose -v
--decrypt -d

15.2.6 Examples of Commands
All of the above provides a lot of options – providing you with more

opportunity to make an error!

Export an ASCII key:
gpg -a --export ‘A User’ > profkey.asc

This command exports the key for ‘A User’ (placed in quotes
because there is a space in the name) producing an ASCII file
called profkey. Instead of using the –o option to create a file, the
director has been used.

Import an ASCII key:
gpg --import profkey.asc

This command takes the ASCII key file ‘profkey.asc’ and adds it to
the users public keyring.

Encrypt a file using another user’s public key:
gpg -ea -r ‘B User’ file2encrypt

This command creates a new ASCII file (a option) by the name of
file2encrypt.gpg using the public code of ‘B User’.

Decrypt a file using your secret key, which was encrypted with your public key:
gpg -d file2decrypt.gpg

You must be logged in as the user that is to decrypt the message,
and you are asked for the users Passphrase. The output will be to
the screen. To create a new file, either use the –o option or use
the director to create a new file.

Create a symmetric encrypted file:
gpg -c file2encrypt

You will be required to enter your Passphrase twice to encrypt the
file. Since the passphrase may be different from your “regular”
passphrase – entering the passphrase twice insures there are no
typos. If this were not the case, you might never be able to decrypt
it!

HLUL15
© Dennis Rice

12 / 32

Chapter 15 – System Security Rev 36

Decrypt a symmetric encrypted file:
gpg -d file2decrypt

You will be required to enter your Passphrase in order to decrypt.
Output is to the screen, if you want it to a file, either use the –o
option or the director.

15.3 Secure Shell (Not Complete)
As was noted in a previous chapter, when one establishes a connection to a

remote system using Telnet, all information sent across the network is
transmitted in clear text. This includes your username and password – not a
good thing! Hence, anyone monitoring the network will be able to see what you
are doing on the remote system. If you were configuring the system as the
administrator, they would then know how to access it at a later date and to then
make modifications unknown to you. Even worse, they could create a new user
with root privileges.

To improve security, a protocol was developed to encrypt all information
except for the IP header information. Hence anyone monitoring your
transmissions will find encrypted data and will not be able to detect what you are
doing. This protocol is called Secure Shell, or ssh. Previously in Chapter 8,
Remote Administration, we discussed the basic usage of a Secure Shell. Here
we provide additional information on how to enhance the level of security.

Secure Shell comes in two levels – basic and enhanced. Basic ssh is
enabled by just establishing a link between yourself and the remote server using
a default encryption. Although the information is encrypted, it is not as secure as
one might desire – in fact it may be breakable by someone who wants to monitor
your transmission. Enhanced ssh utilizes a public / private key process so that
you may improve the security level by using your public / private keys.

There are two versions of ssh presently utilized. Version 2 supports version 1
and improves security, so we will only discuss this one option.

As a basic service, when one logs onto a remote system and the enhance
security has not been enabled, you will receive a normal password prompt. All
information will be encrypted.

The normal installation of ssh on Red Hat is maintained in the /usr/bin
directory. Since this directory in normally accessible to all users, each user may
create their own keys, which will maintained in their $HOME directory.

At this time, there are three encryption formats that ssh supports – rsa1
(one), dsa, and rsa. Thus we must create 3 different sets of keys if we need to
connect to different systems. As a general rule, the dsa encryption is often taken
as the default. In the process of creating the three formats, we need to generate
two for each – public and private.

Finally, we need to edit our sshd_config file to limit support of ssh for version
2 only. It is maintained in the /etc/ssh directory.

15.3.1 Step by Step Procedure
It is assumed at this point that the server ssh daemon has already been

installed and is operational. The following is the setup of the enhanced secure
service. For Red Hat, this is a default configuration, but the user may not have

HLUL15
© Dennis Rice

13 / 32

Chapter 15 – System Security Rev 36

implemented the service by creating a public ring. Note that the ssh encryption
is not the same as that generated by GPG.

1. First we need to log onto the server system (the one we will log
onto from a remote system) as the administrator. We then issue
the following commands:
ssh-keygen –b 1024 –t rsa1
ssh-keygen –b 1024 –t dsa
ssh-keygen –b 1024 –t rsa

In general, there is no need to use the rsa1 key unless you know a system is
limited to version 1.

You will be requested for the file location (take the default), and for a
passphrase. After you enter your phrase, DO NOT FORGET IT!

Edit the /etc/ssh/sshd_config file. Change the line:
#Protocol 1,2 to
Protocol 2

This will insure that we are using only ssh version 2.

2. Log out as the administrator and back in as your normal username.
Again create the sets of files. Only create the keys for dsa and rsa,
unless you also wish to support version 1, then also create the key
for rsa1.
ssh-keygen –b 1024 –t dsa
ssh-keygen –b 1024 –t rsa
ssh-keygen –b 1024 –t rsa1 (only if desired)

You will again be requested for the file location and passphrase.
Now to explain what we have done. ssh-keygen is the program that

generates the public and private keys; –b specifies the bit length of the
encryption key; and –t specifies the type of key to be used. In our example we
have specified a 1024 bit key for the dsa, rsa, and rsa version 1 encryption
algorithms. Finally, when we modified the sshd_config file, we specified that we
would only accept the version 2 protocol. Since we modified the configuration
file, we will need to restart the daemon. Issue the command:

service sshd restart

Process 1 and 2 both generate a different set of keys, each in the respective
$HOME directory.

3. Now you need to transmit your public key to the remote user. We
could do this the sneaker-foot way (giving the user a floppy disk
with your public key), or we could send it directly to him (or her).
Once again we have options – you could send it just as an
attachment and have the other user append it to their

HLUL15
© Dennis Rice

14 / 32

Chapter 15 – System Security Rev 36

authorized_keys2 file, or you could send and attach it yourself, of
course with a “few minor complications”.

15.3.2 Sneaker Net
For the easy method, copy your user public key to a floppy:

cd this changes to your home directory
cd .ssh changes to the hidden directory .ssh
mcopy id_dsa.pub a: copies to a DOS formatted floppy

Now give your floppy to your associate and have them append it to their
authorized_keys2 file:

cd
cd .ssh
mcopy a:id_dsa.pub
cat id_dsa.pub >> authorized_keys2

Your public code is now appended to their authorization key file. Make sure
you use the double >, otherwise their authorized_keys2 will be replaced totally
with your key, and they will have lost all previous keys. (Might this be a good
area to recommend backup of the file before appending?) Note that you hand
the floppy disk directly to the recipient, not to someone that will hand it off to the
person it is intended for – that could be a breech in your security.

15.3.3 Email Attachment
If you send the file as an attachment to an email, the other user must then

save the file and append it as above. Note that there is some security risk to this
if someone should intercept your email.

15.3.4 SSH Connection
In this case, you can send the public file directly to the remote user’s file and

attach it directly without their intervention. Of course, they must have
implemented their key so you can attach yours to it. The requirement here is
that you must be supplied an appropriate password to gain access to their
system. To do this, issue the following command:

ssh username@remote-host “cat >> .ssh/authorized_keys2” <
id_dsa.pub

Before you can append your key, you will have to provide the user password,
hence you must be a user on the remote system. Note that in using this
process, you will be transmitting the file across the network in an encrypted
mode. Much better!

15.3.5 Logging onto Remote Host
OK, now you have transferred your public file to the remote system, and you

need to log on.
To log on using your username (the one you transferred the public key to),

issue the command:

HLUL15
© Dennis Rice

15 / 32

mailto:username@remote-host

Chapter 15 – System Security Rev 36

ssh username@remote-host

Now you will be requested for the passphrase rather than your password.
We have enhanced remote access security.

15.3.6 Enhancing your logon on your Remote Access
OK, you have improved security, but heck, you have to always type in that

passphrase. You don’t mind the phrase, just hate all those typing errors .
It would not be sufficient to have a process to just pass the passphrase – we

want to make sure that it is you that is logging on. During an automatic login,
when we ssh to access the remote system, a challenge is made of the
passphrase and a response of the private key is used to verify the challenge.

To enable this process, we need to utilize two additional ssh-utilities.

TBC

15.4 Secure Copy (scp)
Secure Copy, which was introduced back in Chapter 5, allows for the transfer

of a file between two hosts in a secure format. scp uses the same encryption
technique as ssh. To set up scp, first set up the ssh encryption.

15.5 Secure File Transfer (sftp)
Secure File Transfer was also introduced back in Chapter 5. This performs

exactly the same as the normal ftp, except that the transfer of data is encrypted.
Again, it uses the encryption process created by ssh, so that must be established
first.

15.6 Improved Sudo Security
Sudo was first covered back in Chapter 3, showing how one could log in as a

normal user and then upgrade to the administrator on a command basis. For
example, if the user were part of the group wheel, then the following command
could be issued:

$ sudo cat /etc/passwd

As the administrator, you may wish to limit what someone is allowed to
perform. This can be accomplished by setting up specific rights for different
users. This information is maintained in the /etc/sudoers file. Editing of this file
should be implemented using the visudo command.

The /etc/sudoers file is used to validate users and what commands they may
issue. Additionally, sudo can log both successful and unsuccessful login
attempts, as authentication is verified through PAM (convered shortly).

The sudoers file consists of two type of entries, aliases and user
specifications. Aliases are variables, specifications state who is allowed to what.

HLUL15
© Dennis Rice

16 / 32

Chapter 15 – System Security Rev 36

Aliases follow the four following formats:
User_Alias: NAME = User_List
Runas_Alias: NAME = Runas_List
Host_Alias: NAME = Host_List
Cmnd_Alias: NAME = Cmnd_List

The “NAME” is always in all-capitals. The list that follows is comma delimited
and may span more than one line by using the continuation character (\).

Setting up the sudoers file is a complex process, the on-line manual must be
consulted for more detail (man sudo and sudoers). The easiest way to show
how it works is with examples.

User_Alias:
User_Alias FULLTIMERS = drice, jdoe, msmith
User_Alias PARTTIMERS = wking, iward, wkrause
User_Alias OFFICERS = jwhite, bkertner
User_Alias WEBMASTERS = ehoffer, tstaley

Here we have set up four different groups of users, assigning various users to
each group.

Runas_Alias:
Runas_Alias OP = root, operator
Runas_Alias DB = mysql, postgresql

Host_Alias:
Host_Alias SPARC = bigtime, eclipse
Host_Alias PC = dlug, router1, wkstn1, wkstn2
Host_Alias SERVERS = bigtime, dlug, www

Here we have classified different types of host architecture, and assigned the
hostname of each accordingly.

Cmnd_Alias:
Cmnd_Alias DUMPS = /usr/bin/dump, /usr/sbin/restore
Cmnd_Alias KILL = /usr/bin/kill
Cmnd_Alias SHUTDOWN = /usr/sbin/shoutdown
Cmnd_Alias HALT = /usr/sbin/halt, /usr/sbin/fasthalt
Cmnd_Alias SU = /usr/bin/su

In our final example, we are a generic name for various commands. That
way we can specify a set of commands to a specific User_Alias without having to
specify each command.

User Specifications is the section that designates who is allowed to issue
specific commands. The format of the command follows the syntax:

HLUL15
© Dennis Rice

17 / 32

Chapter 15 – System Security Rev 36

Who Source = Permissions Commands
where:

Who specifies a specific user, designated users (User_Alias), or a group
of users.
Source specifies what hosts may issue commands.
Permissions specifies authentication requirements.
Commands specifies what commands may be issued.

By default, two entities are already set up, the user root and the group
%wheel.

root ALL = (ALL) ALL
%wheel ALL = (ALL) ALL

This specifies that both root and anyone a member of the group wheel
(denoted by the “%”) may run any command from any host as any user.

We can assign specific rights to specific users, or the group of users
specified by the User_Alias.

FULLTIMERS ALL = NOPASSWD: ALL

In this line, all users of the FULLTIMES group may run any command from
any host, and do not require authentication.

Assignment of a different group for different rights might be set like the
following.

PARTTIMERS ALL = ALL

Here, the part-time administrators may run any command from any host, but
they are required to authenticate with a password.

A specific user may be allowed to issue commands from a specific set of
hosts.

wilbur PC = ALL

In this example, the user wilbur is allowed to run all commands from only the
PC hosts.

A set up users may be allowed to issue specific commands.
OFFICERS ALL = DUMPS, KILL, SHUTDOWN, HALT

Now a user that is a member of the OFFICERS group is allowed to run only
those commands that are specified by DUMPS, KILL, SHUTDOWN, or HALT.

We can limit to which username that a user may su to.
johnny ALL = /usr/bin/su WEBMASTERS

In this case, the user johnny can use the su command, logging in as one of
the WEBMASTERS users. In this case, johnny must know the username and
password for the user that he will log in as.

There are requirements to allow a specific group to change the password for
anyone else – but we do not want to allow the root administrator's password to
be modified.

HLUL15
© Dennis Rice

18 / 32

Chapter 15 – System Security Rev 36

PARTTIMERS SPARC = /usr/bin/passwd [A-z]*, !/usr/bin/passwd
root

Now all users assigned to the PARTTIMERS group may modify the
passwords for any other user, except root, as long as the first letter of the
password starts with an alpha character, either upper or lower case.
Additionally, they may only issue the changes from one of the SPARC hosts.

A restriction for who is allowed to work on the web page may be set up.
WEBMASTERS www = (www) ALL, (root) /usr/bin/su www

The users that are part of the WEBMASTERS group, when on the www host,
may su onto the host as the user www.

The above represents a lot of examples. More are available in the man page
(sudoers).

When setting up users, it is best to create different groups, and then assign
different users to the group. Users change often, but groups don't. Changing a
group's membership is far easier than changing the sudoers file.

15.7 OpenSSL

15.8 Tripwire (Initial Thoughts)
Topic outline

1. Run program /etc/tripwire/twinstall.sh
2. Run program tripwire --init
3. Create a site passphrase
4. Create a local passphrase
5. To complete the installation, need to enter the site and local

passphrases previously created
6. Must enter local passphrase to create an initial database of files on

your system

Files created:
1. hostname local passphrase encrypted key
2. sitekey site passphrase encrypted key
3. tw.cfg tripwire configuration
4. tw.pol tripwire policy file

15.9 Secure TTY
It is one issue to log onto a system as the root administrator from the system

keyboard, it is another issue when a user telnets into the system and logs in as
the root administrator. It would be a great advantage if we could limit who a
telnet user could log in as.

Unix and Linux provide a mechanism to do this just this. The administrator
can specify specifically who if telnet user is allowed to log in as “root” or not. The
means to this is the file /etc/securetty.

HLUL15
© Dennis Rice

19 / 32

Chapter 15 – System Security Rev 36

auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_stack.so
service=system-auth
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_stack.so
service=system-auth
password required /lib/security/pam_stack.so
service=system-auth
session required /lib/security/pam_stack.so
service=system-auth
session optional /lib/security/pam_console.so

This file is a mapping of virtual consoles (vc) to remote access terminals (tty).
This process applies to both remote access and to the ALT (F1 – F6) alternate
terminal keys. At first the format of the file is not obvious, but there is a direct
correlation between each vc and tty entry. The format of the file is:

vc/1
vc/2
vc/3
…
tty1
tty2
tty3
…

The file is a single column and has been shortened for brevity.
Of special note –

tty1 is the normal keyboard / monitor, and must not be restricted.

To prevent a user from logging in as the root administrator, simply place an
“#” in front of the specific tty that is to be limited, such as:

#tty4

Now a user can log into tty as any user except root. Once logged in, the user
may switch user (su) or “sudo”.

15.10 Plugable Authentication Modules (PAM) 3 , 4
Pam was originally developed for the Solaris Unix Operating System by Sun

Microsystems, and has been enhanced by the Linux community.
PAM is a method that Unix and Linux utilize to verify the rights of users to

perform various functions in accordance to system authentication policies. The
configuration files for specific applications reside in the /etc/pam.d directory.

The concept of PAM is for a PAM aware application to test whether a user
has rights to operate it. Our first method of security is just the password, but
PAM adds additional features that allow the testing of individual users, testing

3 Official Red Hat Linux Administration’s Guide, Red Hat Press, Wiley Publishing
4 Red Hat Linux Security and Optimization, Mohammad Kabir, Red Hat Press, Wiley Publishing

HLUL15
© Dennis Rice

20 / 32

Chapter 15 – System Security Rev 36

their point of origin and even the time of day. Many “Security Objects” (.so files)
are available to test various conditions.

So what is a “PAM aware application? When an application is created, the
software developer must encode special features into it to allow testing of the
user via the PAM modules.

When an application is PAM aware, a file by the same application name must
exist within the directory /etc/pam.d. The application then opens this PAM file to
test the rights of the user. If the user passes the desired tests, then the program
continues to function, otherwise it is terminated.

The PAM file contains a number of module lines, each of which tests a given
feature of the user. In some cases, if the user passes the conditions of the
feature, then the next test is made, and in others, if the user fails the conditions,
the system immediately kills the application’s operation. Of course, there are
options that when a user fails the conditions, additional testing is continued, but
the security test still fails and the application is killed; the advantage of this is that
the user is unable to know for which reason the test failed.

15.10.1 Why Use PAM
PAM provides a number of advantages when used properly.

1. Common authentication mythology for applications.
2. Great flexibility and control over applications
3. Allows developers to utilize an authentication standard rather than

developing their own

15.10.2 Overview of How it Works
Lets say you write a PAM aware program – that is one that must verify the

user prior to continuing to run.
In order to continue, various user attributes are checked and verified by

comparing the username, password, access rights, time of day, and other
attributes that one may deem necessary.

When the program starts, in this example, the user must login and submit a
password. The program then runs a specific configuration file in the /etc/pam.d/
directory. This configuration file specifies a file of authentication modules that
are used to test the username, password and other desired attributes. The
scripts that are used to test for authentication are located in the /lib/security
directory.

15.10.3 Configuration Files
Originally, there was a single file, /etc/pam.conf that was used for

configuration. This file is now only used if the /etc/pam.d/ directory does not
exist.

A PAM configuration file is given the name of its service that it applies to, not
necessarily that of the application. For example, for logging in, the common
PAM application is login. When a user logs in, the file used for authentication is
./etc/pam.d/login

HLUL15
© Dennis Rice

21 / 32

Chapter 15 – System Security Rev 36

]# cat login
#%PAM-1.0
auth required /lib/security/pam_securetty.so
auth required /lib/security/pam_stack.so service=system-auth
auth required /lib/security/pam_nologin.so
account required /lib/security/pam_stack.so service=system-
auth
password required /lib/security/pam_stack.so service=system-
auth
session required /lib/security/pam_stack.so service=system-
auth
session optional /lib/security/pam_console.so
]#

Below we will investigate the layout and options of this particular file.

15.10.4 Authentication Modules
Each line in the file specifies a different type of authentication module. The

order of the modules in a given service file is important to the authentication
process. Thus various tests may be made to insure that a user is properly
authorized.

15.10.5 Module Format
Each module is normally set up as follows:

Module-Type Control-Flag Test-File Arguments

15.10.5.1 Module-Type
There are four types of authentication Modules-Types that are used to control

access to a service.
➢ auth A module used to request a password and verify it. Group

membership or Kerberos are utilized through this module.
➢ account Verifies that access is allowed, such as insuring that

the account has not expired.
➢ password Used to set passwords
➢ session Used to manage a user’s session after they have

been authenticated. May be used to specify the user’s
home directory and mailbox.

15.10.5.2 Control-Flag
There are four types of Control-Flag that are use to specify ….

➢ required The module must be successfully completed in order
to provide authentication. Failure of a required module
causes the user’s access to fail, but will not be notified until
after all other tests are completed.

➢ requisite The module must successfully be completed in order
for user authentication. If the module fails, the user is
notified immediately.

HLUL15
© Dennis Rice

22 / 32

Chapter 15 – System Security Rev 36

➢ sufficient If no required or requisite modules have previously
failed, and the sufficient module passes, no further modules
are checked. Thus the user is authenticated.

➢ optional Other module checks are ignored if this module fails.

Additional Control-Flags are available and are documented in the
/usr/share/doc/pam-version-number/ directory.

15.10.5.3 Test-File
The Test-File is the path/file that the PAM module is to be tested against. All

Test-Files are located in the /lib/security/ directory. The files that actually
perform the authentication testing are known as a “security object” files, and
hence are tagged with a “.so” suffix.

15.10.5.4 Arguments
Arguments may be used to pass additional information to the module. This

allows the same authentication program to be used by different modules, thus
testing for different requirements.

15.10.6 Examples of the Test Files include
The following are examples of some of the authentication modules located in

the /lib/security/ directory:
➢ pam_access.so Uses the /etc/security/access.conf

configuration file. This is a list of usernames, which specify which
tty-list or host-list is to be utilized.

tty-listRestricts users from logging on via a console (tty) port.
host-list Restricts individual users or domains from access.

➢ pam_console.so Specifies which PAM-aware commands, such
as shutdown, halt, and reboot an ordinary user may use. Called by
the login program – login, gdm, or kdm.

➢ pam_cracklib.so Checks if the password has expired (per
pam_unix.so), then the user is prompted for a new password. The
new password is then checked for validity.

➢ pam_deny.so This module always returns a failure. Used to
insure that a login fails. This condition should be the last line in
every authentication module to insure that if all other tests are
indecisive, the general test will fail.

➢ pam_env.so Sets the environmental values specified in the
/etc/security/pam_env.conf file.

➢ pam_ftp.so Tests for ftp user’s email address, which is used for
anonymous login password.

➢ pam_issue.so Displays the contents of the /etc/issue file at
the user login.

➢ pam_lastlog.so Displays the user’s last login information.
➢ pam_limits.so Limits resources of an ordinary user as

specified in the /etc/security/limits.conf file.

HLUL15
© Dennis Rice

23 / 32

Chapter 15 – System Security Rev 36

➢ pam_listfile.so Provides restrictions to remote user login.
➢ pam_localuser.so Checks to see if a user has unread mail, and

displays a message if true.
➢ pam_mail.so Notifies user if they have new mail.
➢ pam_motd.so Displays the message of the of the day when

the user logs in.
➢ pam_nologin.so Check to verify that the user is “root”. If not the

module fails. Only the administrator is allowed to log into the
system. The file /etc/nologin must exist for this to be effective,
which contains a short banner specifying that the user, if not root, is
not allowed to log in.

➢ pam_pwcheck.so Used to verify the password. Works in
conjunction with the pam_unix.so test file.

➢ pam_permit.so Used for very low-risk applications, which all
users are allowed to perform.

➢ pam_radius.so Authenticates RADIUS users.
➢ pam_rhosts.so Specifies whether a user may log in on as a

remote user.
➢ pam_securetty.so Verifies that the root user is allowed to log in

on a specified tty port, as specified in the /etc/securetty file.
➢ pam_tally.so Tracks user login attempts, denying access if

exceeded.
➢ pam_time.so Verifies that a user may log on during specified

times.
➢ pam_unix.so Account verification is performed. Initiates the

process for the user to be asked for a password. Checks against
the passwd and shadow files to check if the account has expired (if
the shadow argument exists). Allows the user to log in with a
blank password (if the nullok argument exists) – not a good idea!

➢ pam_userdb.so Authenticates various user databases.
➢ Pam_wheel.so Allows only wheel users to log on.

15.10.7 Discussion of Example
Now lets go back and look at the previously shown example for ftp.

auth required /lib/security/pam_securetty.so
pam_securetty tests verifies that the administrator is allowed to log
in on the respective port. The /etc/securetty file specifies which
ports (ALT-Fx) ports the administrator is allowed to use. If the
administrator is not allowed on the designated tty port, then the test
fails.

auth required /lib/security/pam_stack.so service=system-auth
pam_stack tests the user’s password to verify that it is correct.

auth required /lib/security/pam_nologin.so
pam_nologin tests to see if the user is logging is as the
administrator. If not, then the tests fails.

HLUL15
© Dennis Rice

24 / 32

Chapter 15 – System Security Rev 36

account required /lib/security/pam_stack.so service=system-
auth

pam_stack again tests to verify that the account is still valid, that is
the password has not expired or the account has not been
disabled.

password required /lib/security/pam_stack.so service=system-
auth

pam_stack again tests to see that when the user elects to modify
their password that the password meets the minimum
requirements.

session required /lib/security/pam_stack.so service=system-
auth

pam_stack again is used to set up the user’s home directory and
mailbox.

session optional /lib/security/pam_console.so
pam_console specifies which administrative commands a user is
allowed to issue, i.e., may the user halt the system.

15.10.8 Testing for Conditions
When developing a set of test conditions, which pam module should be

used? The following provides examples of different situations.

Objective Module Action
Root Only pam_nologin Create /etc/nologin file with message

Root pam_cracklibChange /etc/system-auth pam_cracklib

Complexity line to have the following various options:
type=Linux minlen=7 password length 7 characters
dcredit = 1 at least 1 number
ucredit = 1 at least 1 upper case character
lcredit = 1 at least 1 lower case character
ocredit = 1 at least 1 symbol

Password pam_pwcheck Add “remember=3” to the pam_pwcheck
History line of /etc/pam.d/passwd. This forces the user to used
three different passwords on password change. Old passwords are
maintained in the /etc/security/opasswd file.

Limit pam_login Add line to the file:

Connections session required pam_limits.so
Edit the /etc/security/limits.conf file by adding

* hard maxlogins 2

Time of pam_login Add line to the file:
Day account required pam_time.so

HLUL15
© Dennis Rice

25 / 32

Chapter 15 – System Security Rev 36

Add line to the /etc/security/time.conf file
*; *; timeout; username <hhmm>-<hhmm>

User is now limited to logging in during hours
other than those specified.

Password pam_unix Use the application chage username and
supply
Aging values to limit password aging.

Account pam_unix Use the application chage username and
supply
Expiration values to specify expiration.

Grace pam_unix Use the application chage
username and supply

Logins values to specify grace logins.

Log pam_warn Add to the /etc/pam.d/login file
Activity session optional pam_warn.so

Logins will be logged to the /var/log/messages
file.

15.11 Snort

15.12 SATAN and SAINT

15.13 Chroot

15.14 Port Map

15.15 Controlling Remote Access
Access to a system may be controlled by two files, /etc/hosts.allow and

/etc/hosts.deny. Between these two, the administrator may allow or limit which
hosts are allowed to gain access. Note that access is controlled by host name or
IP address. Individual users, even if valid on a system, if logging in from a
restricted host, would not be permitted on the system.

HLUL15
© Dennis Rice

26 / 32

Chapter 15 – System Security Rev 36

In this review, the basic options will be reviewed, additional detain may be
obtained from the hosts_options(5) man page.

15.15.1 Access Control
Access control is specified by various entries into the two files. The first file

to be evaluated when a remote host attempts a logon is the hosts.allow file,
after that the hosts.deny will be evaluated. If the request does not meet or fail
either limitations in the two files, access is granted.

15.15.2 Access Control Rules
The rules for access control is made up of zero or more rule lines. They are

processed in order of appearance, and is terminated when a matching rule is
found.

A newline character is ignored if the line is terminated in a backslash (\).
This permits a long line to span multiple lines of the screen.

Blank lines or line that begin with the hash (#) character are ignored.
This allows comments to be written into the rules.

All remaining lines must follow the following format, with brackets
specifying options.

daemon_list : client_list [: shell_command]

A daemon_list is a list of one or more daemon process names or a wildcard.
A client_list is a list of one or more host names, addresses, patterns or

wildcards that are to be matched against the client host name or address.
The list elements must be separated by blanks and / or commas.

15.15.3 Rule Patterns
The Access Control List (ACL) utilizes a pattern for its language.

A string that begins with the dot (.) character is matched if the last
components of its name match the specified pattern. For example, the
pattern “ .tue.nl ” will find a match in the hostname of “wzv.win.tue.nl”.

A string that ends with the dot (.) character is matched if the host
address if the first numeric field matches the given string. For example,
the pattern “123.135.” matches the address of every host on the specified
network (123.135.X.X).

A string that begins with the AT-Sign (@) character is treated as an NIS
netgroup name. A host name is matched if it is a host member of the
specified netgroup.

A numeric IP Address in the form of “A.B.C.D / M.N.P.R” is interpreted a
network / subnet mask pair for an IPv4 network host. All hosts on the
specified network address are a match.

HLUL15
© Dennis Rice

27 / 32

Chapter 15 – System Security Rev 36

A numeric IP Address in the form of “A:B:C:D:E:F:G:H / M” (in Hex) is
interpreted as an IPv6 network / subnet mask pair (mask in CIDR format).
All hosts on the specified network address are a match.

A string that begins with a slash (/) character is treated as a file name. A
host name or address is matched if it matches any host name or address
pattern listed in the specified file name. The external file format is zero or
more lines which lists a host name or address pattern separated by
whitespace. This allows an external file to contain the list of hosts or
addresses that are to be tested.

The asterisk (*) or question mark (?) characters are wild cards. An
asterisk matches multiple characters whereas a question mark matches a
single character. These substitutions may be made for either a hostname
or IP Address, except for either of the IP “Address / Subnet Mask” format
or with a hostname matching format that either begins or ends with the
dot.

15.15.4 Wildcard Matches
Explicit wildcard support the following:

ALL The universal wildcard, always matches.
LOCAL Matches any host whose name does not contain a

dot character.
UNKOWN Matches any user whose name is unknown. This

pattern should be used with caution especially if using
a remote server and it becomes unavailable.

KNOWN Matches any known username that is known. This
pattern should be used with caution especially if using
a remote server and it becomes unavailable.

PARANOID Matches any host whose name does not match its
address. When the tcpd is built with “-DPARANOID
(default mode), it drops request requests from the
client even before looking at the Access Control
tables.

15.15.5 Operators
The following operator is available.

EXCEPT Intended to exclude a portion of a list. The form of
the operator is “List-1 EXCEPT List-2”. This is
interpreted as matching anything within List-1 unless
it is included in List-2.

15.15.6 Shell Commands
Allows shell commands to be included. The command is subjected to

substitutions. For more detail, see the man pages.

HLUL15
© Dennis Rice

28 / 32

Chapter 15 – System Security Rev 36

15.15.7 Server Endpoint Patterns
In order to distinguish clients by the network address, use the pattern:

process_name@host_pattern : client_list …

This format allows a host with different hostname from the specified network
address to be matched. This condition might be used to impede a user from
logging into a system and using a invalid network address.

15.15.8 Detecting Address Spoofing Attacks
Due to a flaw in some TCP/IP implementation, intruders may sometime be

able to break into a system via a remote shell service. For more detail, see the
man pages for hosts-allow and hosts-deny.

15.15.9 Examples
In reviewing the above one rules, one can observe that a great deal of

flexibility exists to either allow or deny either an individual host or a network of
hosts.

Note that the allow table is viewed first, then the deny table.

15.15.9.1 Mostly Closed
In this example, access is denied to all by default with only explicitly

authorized hosts permitted.
/etc/hosts.allow:

ALL: LOCAL @some_netgroup
ALL: .foobar.edu EXCEPT terminalserver.foobar.edu

/etc/hosts.deny:
ALL: ALL

All users of the network some_netgroup and users of the foobar.edu network,
except the host terminal server are permitted. Everyone else is denied. Note
that if we viewed the hosts.deny file first, no one would be allowed in – thus by
viewing the allow file first, those who qualify may access, those who do not are
denied.

15.15.9.2 Mostly Open
By default, with nothing in the hosts.allow file, access is granted. To limit

those which are to be denied, the following entries are required in the deny file.
/etc/hosts.deny:

ALL: some.host.name, .some.domain
ALL EXCEPT in.fingerd: other.host.name, .other.domain

The first rule denies the specific host “some.host.name”. The second rule
permits the Internet finger request from the network “other.domain” and the host
“other.host.name”. See the man page for hosts.allow for more detail.

HLUL15
© Dennis Rice

29 / 32

mailto:rocess_name@host_pattern

Chapter 15 – System Security Rev 36

15.15.10 Diagnostics
When permitting or denying access and a syntax error is incurred in the

appropriate file, an entry is made via the syslog daemon.

15.16 TCP Wrappers 5
TCP Wrappers provide a means to guard against remotely required services

such as ssh, telnet, and ftp. The function of TCP Wrapper is to “wrap” a service
request by authentication service, thus providing a greater control of access and
logging. When utilized, TCP Wrapper provides the remote user host
identification information.

By default, TCP Wrappers is installed in Red Hat 8 and later for server
systems. Earlier versions require installation.

15.17 Commands Used in this Chapter

15.18 Chapter Review Questions

5 Official Red Hat Linux Administrator’s Guide, Red Hat Press, Wiley Publishing

HLUL15
© Dennis Rice

30 / 32

Chapter 15 – System Security Rev 36

Chapter Index
B

Boolean Algebra 4
C

Chroot 26
D

Data Encryption of Files 4
Digital Signature 10
Directory

/etc/pam.d 20p.
/lib/security 23
/usr/share/doc/pam-version-number

23
E

Encryption
Symmetric 5

Encryption Theory 4
Exclusive OR 4

F
File

Security Object 21
/etc/issue 23
/etc/nologin 24
/etc/pam.conf 21
/etc/pam.d/login 21, 26
/etc/pam.d/pam.conf 21
/etc/pam.d/passwd 25
/etc/securetty 24
/etc/security/access.conf 23
/etc/security/limits.conf 23, 25
/etc/security/pam_env.conf 23
/etc/security/time.conf 26
/etc/sudoers 16
~/.gnupg/pubring.gp 6
~/.gnupg/secring.gpg 6

G
GNU Privacy Guard (GPG) 6
GPG

Passphrase 7
Short Command Format 11
Symmetric Encryption 9

GPG Encryption 6
P

PAM
Arguments 23

Authentication Modules 22
Control Flag 22
Module Format 22
Module-Type 22
Overview of How it Works 21
Test File 23
Why Use 21

Password Security 4
Plugable Authentication Modules

(PAM) 20
Port Map 26
Pretty Good Privacy (PGP) 6
Public Key 5

R
Remote Host Access

Access Control 27
Access Control Rules 27
Detecting Address Spoofing Attacts

29
Examples 29
Operators 28
Rule Patterns 27
Server Endpoint Patters 29
Shell Commands 28
Wildcard Matches 28

Remote Host Access - Controlling 26
S

Secret Key 5
Secure Copy (scp) 16
Secure Shell 13
Secure TTY 19
Security Object Files 21
sftp 16
Snort 26
SSH

Email Attachment 15
Enhancing Logon to Remote Access

16
Logging onto Remote Host 15
Procedure 13
Sneaker Net 15
ssh Connection 15

Sudo
Cmnd_Alias 17

HLUL15
© Dennis Rice

31 / 32

Chapter 15 – System Security Rev 36

Host_Alias 17
Runas_Alias 17
User_Alias 17

T
TCP Wrappers 30
Tripwire 19

U
URL

GNUPG.org 6
Utility

chage 26
gpg

armor 8
clearsign 10
decrypt 8, 11

encrypt 8p.
export 8
gen-key 6
import 8
list-keys 7p.
sign 10

service
sshd 14

ssh
keygen 14

sudo 16
visudo 16

W
www.bigfoot.com 11
www.gnupg.org 11

HLUL15
© Dennis Rice

32 / 32

	System Security
	15.1	Password Security
	15.2	Data Encryption of Files1,2
	15.2.1	A Little Theory on Encryption
	15.2.2	GPG Encryption
	gpg – – gen-key
	gpg – – gen-key

	15.2.3	Creating a Symmetric Encryption File
	15.2.4	Digital Signature
	Hash: SHA1

	15.2.5	Other Options
	15.2.6	These Commands Are Too Long
	15.2.6	Examples of Commands

	15.3	Secure Shell (Not Complete)
	15.3.1	Step by Step Procedure
	15.3.2	Sneaker Net
	15.3.3	Email Attachment
	15.3.4	SSH Connection
	15.3.5	Logging onto Remote Host
	15.3.6	Enhancing your logon on your Remote Access

	15.4	Secure Copy (scp)
	15.5	Secure File Transfer (sftp)
	15.6	Improved Sudo Security
	15.7	OpenSSL
	15.8	Tripwire (Initial Thoughts)
	15.9	Secure TTY
	15.10.1	Why Use PAM
	15.10.2	Overview of How it Works
	15.10.3		Configuration Files
	15.10.4		Authentication Modules
	15.10.5		Module Format
	15.10.5.1	Module-Type
	15.10.5.2	Control-Flag
	15.10.5.3	Test-File
	15.10.5.4	Arguments

	15.10.6	Examples of the Test Files include
	15.10.7	Discussion of Example
	15.10.8	Testing for Conditions

	15.11	Snort
	15.12	SATAN and SAINT
	15.13	Chroot
	15.14	Port Map
	15.15	Controlling Remote Access
	15.15.1	Access Control
	15.15.2	Access Control Rules
	15.15.3	Rule Patterns
	15.15.4	Wildcard Matches
	15.15.5	Operators
	15.15.6	Shell Commands
	15.15.7	Server Endpoint Patterns
	15.15.8	Detecting Address Spoofing Attacks
	15.15.9	Examples
	15.15.9.1	Mostly Closed
	15.15.9.2	Mostly Open

	15.15.10	Diagnostics

	15.16	TCP Wrappers5
	15.17	Commands Used in this Chapter
	15.18	Chapter Review Questions

