
Chapter 11 – Router Configuration Rev 39

Chapter 11

Router Configuration

This chapter introduces how a Linux system can function as a Router. We will
create a simple dual Ethernet system, but the concepts can be applied to
systems that support additional interfaces.

Concepts Learned in this Chapter
➢ Setting up multiple Ethernet interfaces
➢ Networking Routing
➢ Network Address Translation
➢ Firewall Design

HLUL11
© Dennis Rice

1 / 33

Chapter 11 – Router Configuration Rev 39

Table of Contents
Router Configuration... 1

11.1 Dual Ethernet.. 3
11.1.1 IP Address... 4
11.1.2 Gateway Address... 4

11.2 Dual Ethernet Router.. 4
11.2.1 Equipment Requirements.. 5
11.2.2 Objective 1: Installation of Two NIC cards.. 5

11.3 Route Command... 7
11.3.1 Examples of usage.. 9

11.4 Network Address Translation Router (NAT).. 9
11.4.1 IP Masquerading, .. 10
11.4.2 IP Forwarding (Not Complete)... 11

11.5 IP Chains Firewall,,... 12
11.5.1 Firewall Background... 12

11.5.1.1 Action.. 13
11.5.1.2 Chain.. 13
11.5.1.3 Setting up a Filtering Firewall..15

11.5.2 A Working Filter... 17
11.6 IP Tables Firewall ... 26

11.6.1 Using IPTables... 27
11.X Commands Used in this Chapter.. 30
11.Y Chapter Review Questions... 30

HLUL11
© Dennis Rice

2 / 33

Chapter 11 – Router Configuration Rev 39

11.1 Dual Ethernet
Most commonly we address the installation of Ethernet NICs, but the same

concept will also apply to any other network interface, including Token Ring and
a serial interface. In this practice, we address only the Ethernet interface. The
following information is derived from the Ethernet HOWTO.

Fortunately, with the present distributions, nearly all Ethernet cards are
automatically detected by the modprobe utility to assign the appropriate driver,
assigning the correct hardware address and interrupt values. Whether they are
installed prior to installation or afterwards, upon the booting of Linux after the
installation, they will be detected and allow configuration.

If additional options are required, then one must configure the Unix and Linux
distributions to use modular drivers, that is, external drivers that are not built into
the kernel. If the card is of the PCI (Plug and Play) type, the module will typically
detect all of the installed cards. For ISA cards, we typically need to specify the
Interrupt and I/O base address for each card. For the boot process, this
information may be stored in the /etc/conf.modules file.

The conf.modules format is:
alias eth0 type1
alias eth1 type2
options –o type1 io=0xabc irq=m
options –o type2 io=0xdef irq=n

Experience has shown that although you can install two different vendors,
fewer problems will be encountered if the same vendor is used for all cards.
When you have a Pentium PC, using PnP cards generally makes this problem a
non-issue.

The above configuration of PnP cards allows the modprobe to assign the
appropriate driver and to assign the correct address and interrupt values. Note
that for non-PnP cards, the I/O address and interrupt values are those
configured on the card in the EEPROM or by switches or jumpers on the card. In
order to change the EEPROM values, one must use the vendor’s configuration
program, which normally operates under DOS.

After the cards have been booted up, they can be tested with the commands:
modprobe ethN
dmesg | less

where N is the interface number.

At bootup, Linux may only probe for the first available card, leaving the
second (or more) cards uninstalled. We can manually force the probing of the
second card at the LILO command by giving the command:

LILO: linux ether=5, 0xadd1, eth0 ether15, 0xadd2, eth1

HLUL11
© Dennis Rice

3 / 33

Chapter 11 – Router Configuration Rev 39

This can be cumbersome to enter every time at boot, so we can make it
automatic by using the append command in the /etc/lilo.conf file.

During the installation of Linux, the process will normally auto detect both (or
all) cards on a newer version. You can configure the IP address of the first card
during installation, but will be required to configure the address of the other
card(s) later.

Setting up the second or later card is most easily accomplished using the X
Windows vendor supplied Network Configurator. Using either KDE or GNOME,
you are able to set the various addresses and subnet masks for each interface.

Note that when configuring an interface, at least three settings must be made
to each interface – IP Address, Subnet Mask, and Gateway. The DNS address
may also be required, but these are not directly related to the interface.

11.1.1 IP Address
For a review of IP address operation, go back to Chapter 8 to obtain more

detail of how addresses are utilized. Remember that a host address consists of
both the IP address and the subnet mask.

11.1.2 Gateway Address
Finally, a host needs to know where a packet must be sent if it is not destined

for the local network. This is known as the Gateway Address. Typically, it is
applied to each host, and not to a router, but sometimes we need to specify to
the router which other device to utilize in order to forward packets. This device,
a router, will have a local network address.

11.2 Dual Ethernet Router
A router provides for the interconnection of different LAN segments or

domains. It is capable, if necessary, of converting the protocol on one LAN
segment to another format for the transmission over extended distances.
Normally, a router is intended to maintain the same protocol on both segments,
whereas a Gateway is capable of converting protocols if such is required.
Because of marketing’s improper use of terms, the use of router and gateway
are often used interchangeably.

Routers are able to support the following functions:
1. Efficiently direct packets from one network to another, thereby

reducing network traffic.
2. Join close or far networks.
3. Connection of different network protocols.
4. Reduction of network segment bottlenecks.
5. Function as a local network segment firewall

The setting up of a router requires several steps. First we must set up a
computer by using the Linux Operating System to support multiple routing
interfaces. Second, we then configure these interfaces as a routed network.
This should have been done in the previous lab.

HLUL11
© Dennis Rice

4 / 33

Chapter 11 – Router Configuration Rev 39

Recalling from previous discussion that in general our communications
software is built upon a model called the OSI 7 Layer Model. Within this model,
the forth layer, Networking, is where the routing function takes place. Instructing
the router to know how to route to different networks can be achieved in two
different ways. The first is to manually enter the values, called Static Routing,
and the second method is for the router on it own to automatically learn who is
“out there”, called Dynamic Routing.

Static Routing is where the system administrator must manually enter the
routes to a routing table via various commands either at the Command Line
Interface or through X Windows GUI interfaces.

Dynamic Routing, when enabled, allows the router to listen to the network
and learn what other segments exist, and thereby automatically add that network
segment address to its route table. This is the preferred method because the
administrator is not required to be notified and manually update the table – which
would be a considerable problem to their normal workload. During Dynamic
Routing, packets are exchanged between routers that contain “routing table
entries”, which are used to update the local table entries.

Red Hat Linux version 6.0 and later may be easily configured to support all of
the routing and firewall functions. Although Linux is capable of supporting
multiple protocols, we will concentrate on the TCP/IP protocol for this
configuration. Other protocols will require the user to do independent
investigation.

11.2.1 Equipment Requirements
The following equipment is required to set up a router:

1. 486 PC or better
2. 32 MB RAM or greater
3. 500 MB Hard Drive, 1.5 GB preferred
4. 2 Ethernet NIC cards
5. CD ROM
6. Red Hat Linux version 6.0 or later

These are the minimum requirements, especially with the Hard Drive, and
require that a minimum installation of Linux be performed. An improved system,
specifically a Pentium with 128 MB of RAM and a 6 Gbyte drive is recommended
for installing more up to date distributions. This type of installation is a minimum
system, working in the Command Line Mode only.

11.2.2 Objective 1: Installation of Two NIC cards
Our first requirement will be to install two NIC cards in the computer. It is

assumed that at least a minimum installation has been made and that the
system is operating correctly. If the system was not booted to X Windows
automatically, then start it. It is also assumed that the two NIC cards were
previously installed in the computer.

Although the write up specifies IP addresses, you need to be aware that you
may need to use other addresses either in the lab configuration or in a real
network.

HLUL11
© Dennis Rice

5 / 33

Chapter 11 – Router Configuration Rev 39

1. Log onto the system as the root administrator.
2. Right Click on the desktop (not on an icon), then left click on

Execute Command. Type in netcfg (this command unfortunately
is depreciated)and hit enter to start the application. Newer
versions should use the X Windows Network Configurator.

3. The Network Configurator will appear. Click on the Interfaces Tab.
4. If Linux saw the either or both of the cards, you should see eth0

and / or eth1, if there is something different, delete everything but
the lo entry.

5. Assuming that neither Ethernet interface card was observed, click
on ADD and select Ethernet, click on OK.

6. We need to set the IP address for eth0 to 198.168.0.100. (This
address needs to be adjusted appropriately for your specific LAN
segment. See below.)

7. Click ACTIVATE INTERFACE AT BOOT TIME and click DONE.
8. Click on SAVE configuration to implement the update for the first

Ethernet interface.
9. Select the installed device (eth0), click on ACTIVATE.
10. We now need to set up the second interface (eth1). Repeat steps

5, 6, 7, 8, and 9 for the second Ethernet card, with the exception
that we need to utilize the IP address 192.168.10.100. (See
below.)

11. Save the changes and exit.
12. If the configuration is not current. Investigate what needs to be

done and activate the changes.
13. As in Step 2, again open the linuxconf application from the

desktop.
14. Click on the Networking Tab, then click on the Basic Host

Information button. Finally click on Adaptor 1.
15. Make sure that the interface is enabled, has the Primary Name of

Router10, with the domain name of alab.com. There should be
no aliases. Make sure the IP address is 192.168.10.100 and that
the subnet mask is 255.255.255.0 (or as specified by the
instructor). In the kernel module drop down box, select the type of
NIC card that was installed. Click the accept Button.

16. Now select Adaptor 2. Make sure that it has the Primary Name of
Router20, with the domain of blab.com. There should be no
aliases. Again confirm that the IP address is 192.168.0.100. and
that the subnet mask is 255.255.255.0. In the Kernel module drop
down box, select the type of NIC card that was installed. Click the
accept Button.

17. Exit everything – returning back to the desktop.
18. Reboot the computer.

You should now have a system with two working NIC cards that have been
activated during the boot. If you do another reboot, you should be able to
observe the lines during the boot process “bringing up interface eth0 and

HLUL11
© Dennis Rice

6 / 33

Chapter 11 – Router Configuration Rev 39

eth1”. Issue the command ifconfig to confirm that both ports are active and
have the proper IP addresses. It is a good idea to provide some physical
marking on the computer to indicate which physical interface card is which.
During the documentation, note the IRQ and IO addresses of each interface.
This may take some experimentation to confirm which is which.

For a discussion, the following addresses will be used:
Segment 1: 192.168.0.0

Host: 192.168.0.2
Rtr 1: 192.168.0.100

Segment 2: 192.168.10.0
Host: 192.168.10.2
Rtr 1: 192.168.10.101
Rtr 2: 192.168.10.101

Segment 3: 192.168.20.0
Host: 192.168.20.2
Rtr 2: 192.168.20.100
Rtr 3: 192.168.20.101

Segment 4: 192.168.30.0
Host: 192.168.30.2
Rtr 3: 192.168.30.100

11.3 Route Command
Before we can have a computer communicate with the Internet, or anyone

else on our local network, it must know what information is to be sent where.
The fundamental command to achieve this is route.

Issuing the command:
route

Typically provides an output similar to the following:
Kernel IP routing table
Destination Gateway Genmask Flags MetricRef Use Iface
192.168.1.0 * 255.255.255.0 U 0 0 0 eth0
127.0.0.0 * 255.0.0.0 U 0 0 0 lo
default gateway 0.0.0.0 UG 0 0 0 eth0

From this output, we learn the following information:

Destination This is network that we wish to go to. In our example we
have:

192.168.1.0 This is our local network address, so anyone on this
network is served by this line.

127.0.0.0 This is the local loopback address, that is one that we
can only use to test our own IP stack. This loopback
point is performed at the OSI model Network Layer.

Default All other traffic will be sent to this address.
Gateway This specifies the address of the device where

information is to be forwarded to.
* All information on the local network address is accepted.
Gateway In this example, we see the name “gateway” because it

has been defined in the /etc/hosts file. Otherwise we

HLUL11
© Dennis Rice

7 / 33

Chapter 11 – Router Configuration Rev 39

would see the actual IP address of the router to which we
would be forwarding our packets to. (In this case, the IP
address is 192.168.1.1 .)

Genmask This is the subnet mask used to specify which traffic is to
be routed on the specified destination.

255.255.255.0 All traffic on the local network is specified.
255.0.0.0 All loopback traffic is specified.
0.0.0.0 All remaining traffic is to use this network.

Flags Specifies status / utilization of the interface.
U (route is up)
H (target is a host)
G (use gateway)
R (reinstate route for dynamic routing)
D (dynamically installed by daemon or redirect)
M (modified from routing daemon or redirect)
A (installed by addrconf)
C (cache entry)
! (reject route)

Metric Specifies which route should be used if more than one
path is available to reach the remote location.

References The number of references to this entry, but not utilized in
Linux.

Use A count of the lookups for this route.
Interface The interface that is to be used for forwarding the

information.

After we have displayed the routing table, we might find it necessary to
manually modify the entries. Options include:

add Add a new route to the table.
del Delete an existing route from the table.
-target Specify a network or host using an IP address.
-net Specify a target network.
netmask Specify the subnet mask needed for a network.
gw Specify that the routing is to a gateway router. Static routes

must be set up.

To understand how the routing table is used, we need to evaluate two
situations – communicating with a another host on the same network and
communicating with a host on a foreign network. To differenciate between the
two, the TCP software compares the host address, destination address, and the
subnet mask.

If the network address for the local host and destination host are the same,
then the host local host obtains the MAC address of the destination host (using
the ARP protocol) and transmits the data out of the local network card by looking
up the interface in the routing table. In our example it is specified by the line:

192.168.1.0 * 255.255.255.0 U 0 0 0
eth0

HLUL11
© Dennis Rice

8 / 33

Chapter 11 – Router Configuration Rev 39

We can observe that any IP address with the network address of 192.168.1.0
(subnet mask of 255.255.255.0) is to be transmitted on eth0.

If the network address for the destination host is different, then the data is
forwarded to the network router, as specified by the line:

default gateway 0.0.0.0 UG 0 0 0
eth0

This specifies that all other network addresses are to be (also) transmitted on
eth0 in this example. If we had a WAN interface on our computer (making it a
router), then it would specify a different interface.

11.3.1 Examples of usage
route add -net 127.0.0.0

Adds the normal loopback entry, using netmask 255.0.0.0 (class A
net, determined from the destination address) and associated with
the "lo" device (assuming this device was previously set up
correctly with ifconfig(8)).

route add -net 192.56.76.0 netmask 255.255.255.0 dev eth0
Adds a route to the network 192.56.76.x via "eth0". The Class C
netmask modifier is not really necessary here because 192.* is a
Class C IP address. The word "dev" can be omitted here.

route add default gw mango-gw
Adds a default route (which will be used if no other route matches).
All packets using this route will be gatewayed through "mango-gw".
The device which will actually be used for that route depends on
how we can reach "mango-gw" - the static route to "mango-gw" will
have to be set up before in the /etc/hosts file.

route add -net 224.0.0.0 netmask 240.0.0.0 dev eth0
This is an obscure one documented so people know how to do it.
This sets all of the class D (multicast) IP routes to go via "eth0".
This is the correct normal configuration line with a multicasting
kernel.

11.4 Network Address Translation Router (NAT)
One of the functions of a router is to create a “private” network. This is a

local network that typically utilizes one or more of the public domain IP
Addresses for internal use, and has a dedicated private IP Address visible to the
public.

How this works is for the router on the Internet side is to have a private IP
address, and this address is translated into an internal address for the local
network. Normally, anyone on the outside is not able to initiate a session with an
internal host because they will be blocked, but a user on the inside can initiate a
session to an external host. Thus a user can establish a connection to a remote
web site to view a page.

HLUL11
© Dennis Rice

9 / 33

Chapter 11 – Router Configuration Rev 39

11.4.1 IP Masquerading1,2
IP Masquerading is a method by which we can hide a local network from the

rest or the Internet world. This method provides the first level of firewall
protection.

The best way to describe the process is by example.
A client wishes to observe a web page for IP masquerading. The URL is

typed into the browser – www.ipmasq.cjb.net .
Since we do not have the IP Address, we look to the client host table, but

since it is not there, we request the address from the DNS server at our ISP, via
our router.

The router receives the DNS request from the client. It then removes the
client address, selects an unused service port (say 2001), and assigns the port
number to the request – it then stores this mapping of client IP Address to port
number in memory. Finally, the DNS request is transmitted to the ISP DNS
Server with the origination address o f the router. Hence the DNS server does
not see the address of the origination client.

By whatever means, the DNS server obtains the IP address for
ipmasq.cjb.net, and sends it back to the router address with port 2001.

The router then observes the port 2001, and realizes that this is the request
that it transmitted previously, and retrieving the client address from the 2001 port
map, the router strips it own address from the return address and forwards the
packet to the originating client.

Now that the client has the IP Address for the URL, it then issues a request to
the IP Address for the web page out to the router.

This process is repeated a number of times with the client’s IP Address being
deleted by the router, and the request sent out to the Internet with the router’s IP
Address.

IP Masquerading allows us to set up rules for routing our traffic. These are
contained in the /proc/net/ip_fwchains file. These rules provide the following
options:

ACCEPT Allows the packet to pass through the router.
DENY Drops the packets without forwarding it.
REJECT Drops the packet without forwarding, but sends a message

back to the originator saying it was dropped.
MASQ Packets are masqueraded as though they come from the

client.

The above rules are set up on one of four different categories, as might be
appropriate for the desired service:

IP Input Chain Packets terminating to the local network
IP Output Chain Packets originating from the local network
IP Forwarding Chain Packets that are to be forwarded through the

firewall
User Defined Chain If the other rules don’t work, use this category

1 Red Hat Linux Bible; by Christopher Negus; IDG Books
2 Linux – The Complete Reference; by Richard Petersen; Osborne / McGraw Hill

HLUL11
© Dennis Rice

10 / 33

http://www.ipmasq.cjb.net/

Chapter 11 – Router Configuration Rev 39

For additional information, research the manual pages for ipchains and ipfw,
and the IP Masquerade mini-HOWTO. You can also go to the
www.ipmasq.cjb.net web page.

11.4.2 IP Forwarding (Not Complete)
After we set up Masquerading on a router, we commonly need to set up a

process called IP Forwarding.
IP Forwarding is required to make a Linux gateway router operate.
To setup IP Forwarding, we need to modify a specific file. Using either vi or

pico, modify the /etc/sysconfig/network file. The normal content of this file is:
NETWORKING = yes
FORWARD_IPV4 = no
HOSTNAME = {your full host name address (49.devry.edu)}
DOMAINNAME = {your domain name address (devry.edu)}
GATEWAY = {IP Address of the network Gateway router

(205.205.205.111)}
GATEWAYDEV = eth0

We need to modify this to set the line FORWARD_IPV4 = yes.
On the client host, we need to add the route to the gateway. Issue the

command:
route add default gw {gateway IP Address}

Figure 11.1: Simple Linux Router Network

HLUL11
© Dennis Rice

11 / 33

http://www.ipmasq.cjb.net/

Chapter 11 – Router Configuration Rev 39

11.5 IP Chains Firewall 3 , 4 , 5
A Firewall Server is a router that protects all or part of a network from outside

intrusion. There are two types of firewalls – filtering and proxy. Commonly, a
firewall server is installed to protect a private network. In this concept, it is
commonly referred to as a Network Address Translator, or NAT. This function is
achieved by using IP Masquerading.

A filtering firewall looks at each entering packet and processes set of rules to
decide if the packet will be allowed to pass through the server. As such it
operates at the OSI Network Layer to decide if the packet is forwarded.

A NAT firewall performs a translation of the packet addresses by being an
intermediary to the flow of packets. In this way, all traffic originated from within
the private network appears as if it originated from the NAT server, which
converts the originating host address to its own and forwards the packet to the
outside. Therefore, the firewall operates at the OSI Application Layer.

Two types of private networks can be constructed, either a direct connected
one or one that is behind a firewall. The latter establishes a Demilitarized Zone,
or DMZ, which is the Firewall Network.

IP Filtering works by testing each packet against various rules that the
administrator creates. Red Hat Linux comes with a package called ipchains,
and the diald program that can be used to set up the rules. This type of firewall
is relatively easy to configure, is efficient, and can be installed on a 386 / 486
Intel processor which can support a DS-1 / T-1 interconnection to the network.
One problem with the IP Filter firewall is that it is subject to penetration by
crackers who may attempt to gain access. Tools have been created to support
testing of the filter firewall.

The filtering process works by setting up a set of chains and rules. Each
packet must pass through each chain “Link”, where each link is a set of rules that
each packet is tested against. A packet enters an interface, is tested to see if it
is allowed, then it is tested to see if it is allowed to be forwarded, and finally
passed to the output for evaluation against that set of rules.

Proxy firewalls require a password to gain access to the private network,
making them relatively difficult to pass through when set up properly. Proxy
servers are more difficult to set up, operate inefficiently and are vulnerable to
software bugs and subject to new attack methods. Configuration of the proxy
server requires each application to be configured in order to be utilized.
Because of the address translation, doubling the addressing process, it is
inefficient. Unfortunately when a hole is discovered in the firewall, it must be
fixed via the programming of the proxy itself. Most administrators are not
capable of the level of control.

11.5.1 Firewall Background
Before we can really explain how the firewall works, we need to review some

of the terms and operations which make up each rule. The basic command
structure of the rule is:

3 Red Hat Linux 6 in Small Business, Paul Sery and Eric Harper, M&T / IDG Books
4 Building Linux and OpenBSD Firewalls; Wes Sonnenreich, Tom Yates; John Wiley & Sons;
5 Point Connect Networks; clarkconnect.org

HLUL11
© Dennis Rice

12 / 33

Chapter 11 – Router Configuration Rev 39

ipchains action chain condition policy

Rules allow the administrator to provide additional guidelines by which each
packet is evaluated. This can be as simple or complicated as the administrator
desires. Keep in mind that the more defined the rules are, the more secure the
firewall is. Our discussion here will be relatively simple and not present a fully
secured system.

Each of the variables (action, chain, condition and policy) are covered in
more detail below.

11.5.1.1 Action
The actions which may be imposed in establishing our rules are as follows:

–F Flush or erase all previous chain rules
–x Flush out all existing chains
–P Set a policy for a specific chain
–L List the rules previously established
–v Display more (verbose) information about the rules. It is used in

conjunction with the –L option.
–n Represent IP Addresses in the dotted numeric notation (not URL)
–A Append another rule to a previously set policy
–D Delete the specified rule from the chain
–R Replace a specified rule of the chain with another
–I Insert a rule at the specified location
–N Create a new chain
–h Help

11.5.1.2 Chain
The filtering process works by setting up a series of chains and rules. Each

packet must pass through each chain, of which there are three. These are:
1. input
2. forward
3. output

11.5.1.2.1 Input
Input chains accept data from an incoming interface. They determine if the

packet is allowed to enter.

11.5.1.2.2 Forward
Forward chains provide for the modification of a packet, normally used for

Masquerading.

11.5.1.2.3 Output
The output chain determines if data is allowed to be sent out of an interface.
Chains are not responsible for the routing of a packet – that is the

responsibility of the routing tables. Chains are only responsible in determining
whether packets may be routed.

HLUL11
© Dennis Rice

13 / 33

Chapter 11 – Router Configuration Rev 39

A packet which is Denied is just dropped into the “bit bucket”, never to be
seen or heard from again. This is the most efficient process, but leaves no
feedback to the originator.

11.5.1.2.4 Condition
Conditions establish that is to be tested. There may be multiple conditions

for a given rule. The conditions are:
–p Specifies a protocol type, which include:

tcp
udp
icmp
all

–b A specified rule is bi-directional (only have to write it once).
This is not applicable to a SNY rule.

–s Specifies the Source IP Address
–i Specifies the specific interface, typical interfaces include:

eth0(1) ethernet port
ppp0(1) dialup ppp modem port

–y Specifies that allows you to match to a matched SYN packet 6

! The previous specified condition is “negated” or reversed
--dport Specifies the Destination Address of the packet (note double

dash)
--sport Specifies the Source Address of the packet (note double dash)
–j Specifies the target (this condition is always last)

11.5.1.2.5 Policy
Each chain consists of a set of rules which determine if the packet is to die or

continue. The action is referred to as a policy or target. These are:
1. ACCEPT
2. DENY
3. REJECT
4. MASQuerade
5. REDIRECT
6. RETURN

11.5.1.2.6 Accept
The rule condition allows the packet to continue through the chain and onto

the next link or chain.

11.5.1.2.7 Deny
This rule condition kills the packet and does not inform the originator. This is

the most efficient process, requiring minimum cpu processing, but leaves the
originator not knowing what happened (this really may be a good thing).

6 SYN Flag – When host on the Internet attempts to respond to a TCP connection request that
was initiated by a local network user. In order to establish a session, the SYN packet must be
allowed, but we do not want to allow unjustified SYN packets which are not in response to our
request.

HLUL11
© Dennis Rice

14 / 33

Chapter 11 – Router Configuration Rev 39

11.5.1.2.8 Reject
This rule condition kills the packet, and then informs the originator that they

did not succeed. A Rejected ICMP packet is also not allowed to pass through
the link, but an ICMP message is returned back to the originator, advising them
of the failure. It is better to know that you were rejected, but it does require
additional process power. Another issue that must be considered in using a
Reject is respect to the cracker. A cracker can then continue to attempt probing
to see if entrance can be obtained. Hence it is better to Deny service for security
purposes.

11.5.1.2.9 Masquerade
Masquerading is something like a proxy service, but is much easier to

configure and operate. One of the greatest benefits is in the creation of a private
network – which is very common in a home or small business network.

The Masquerade may only be used in the Forward chain. It may be used
only if the Kernel has been configured with CONFIG_IP_MASQUERADE set to
true in the Kernel (this is the default status in Red Hat). Packets matching the
rule will have the source IP Address modified to appear as if it were on the other
network. This target is extremely useful for hiding a private network from the rest
of the Internet.

11.5.1.2.10 Redirect
Redirect is used exclusively within an input chain. In order to work, the

Kernel must be configured with the CONFIG_IP-PROXY set to true (this is the
default status in Red Hat). Packets which match the condition for this rule are
re-routed to a local socket, even if they were to go somewhere else. The
benefits are limited except in specific instances, such as the Transparent Web
Cache.

11.5.1.2.11 Return
Return may be used in any chain, but is useful generally in user defined

chains. When used, the default policy for the chain determines the fate of the
packet that matches the specific rule.

11.5.1.3 Setting up a Filtering Firewall
In order to set up IP filtering, we need to install the Red Hat package

ipchains. First test to see if it has been installed during the initial installation
with:

rpm -q ipchains

If not, issue the command:
rpm -ivh /mnt/cdrom/RedHat/RPMS/ipchains*

11.5.1.3.1 Simple Filter
After logging on the server as the root administrator, issue the command:

ipchains –L –n

HLUL11
© Dennis Rice

15 / 33

Chapter 11 – Router Configuration Rev 39

You should observe:
Chain input (policy ACCEPT)
Chain forward (policy ACCEPT)
Chain output (policy ACCEPT)

Hence we see that initially there are no rules set, and everything is accepted.

Before we get started, issue the command:
ipchains –F

Now issue the following commands:
ipchains –P input DENY
ipchains –P forward DENY
ipchains –P output DENY

All packets that try to transverse the firewall will be denied – great if you don’t
want to connect to anything.

One of the first things we want to do from inside our private network is to
browse the Internet with our web browser. Issue the command:

ipchains –A output –p tcp –i ppp0 –d 0.0.0.0/0 www –j ACCEPT
ipchains –A input –p tcp –i ppp0 ! –y –d 0.0.0.0/0 www –j

ACCEPT

1. The source and destination addresses are 0.0.0.0/0, which indicate
that the whole Internet with zero 1’s in the Subnet mask.

2. Only TCP packets are allowed to pass through the firewall.
3. The ! -y specifies that only packets from the outside that are in

response to internal packets are allowed to pass, and have had
their SYN bit set.

4. The specified interface here is ppp0. If you are setting up your
interface for DSL or cable modem, you need to set the interface to
either eth0 or eth1, whichever is connected to the modem.

Issue the command:
ipchains –L –n

you should observe:
Chain input (policy DENY)
target prot opt source destination ports
ACCEPT tcp !y--- 0.0.0.0/0 0.0.0.0/0 * -> 80
Chain forward (policy DENY)
Chain output (policy DENY)
target prot opt source destination ports
ACCEPT tcp ----- 0.0.0.0/0 0.0.0.0/0 * -> 80

HLUL11
© Dennis Rice

16 / 33

Chapter 11 – Router Configuration Rev 39

Now we want to allow DNS queries to go out. These are connectionless
sessions, so a UDP connection is required. Issue the commands:

ipchains –A output –p UDP –i ppp0 –d 0.0.0.0/0 domain –j
ACCEPT

ipchains –A input –p UDP –i ppp0 –d 0.0.0.0/0 domain –j
ACCEPT

1. The first rule sets the UDP protocol of the type domain.
2. The second rule allows the returning response packets to pass

back with the domain information.

Again issue the command:
ipchains –L –n

and we observe:
Chain input (policy DENY)
Target prot opt source destination ports
ACCEPT tcp !y 0.0.0.0/0 0.0.0.0/0 *-> 80
ACCEPT udp ----- 0.0.0.0/0 0.0.0.0/0 *-> 53
Chain forward (policy DENY)
Chain output (policy DENY)
ACCEPT tcp ----- 0.0.0.0/0 0.0.0.0/0 *-> 80
ACCEPT udp ----- 0.0.0.0/0 0.0.0.0/0 *-> 53

Now lets work with the ICMP protocol.
ipchains –F input
ipchains –A input –p tcp –j REJECT

In this case when we telnet, the ICMP message is killed, but the originator will
get the message “connection refused”.

11.5.2 A Working Filter
When you build a full filter, two approaches may be used. The first method is

to open up your firewall and then deny undesirable services, or we can deny
everything and then allow only desired services. The latter approach is the
preferred (and safer) method, which we will illustrate here.

This script is taken from a firewall system called “ClarkConnect.org”. The
firewall installation that they provide is available for free for the downloading off
of the Internet from clarkconnect.org. It is designed to provide a very secure
firewall for a local cable / DSL modem environment in your home. It references
additional features that are not necessarily covered in this document. This is
provided as an example and for your review (with permission of Clark Connect),
and is not to be copied into another firewall that is not using PointClark Networks
software. (This listing is not the latest version and may have updates made to it.)
It is shown here for illustrative purposes only. (Note that some lines are longer
than the width of the page.)

#!/bin/sh

HLUL11
© Dennis Rice

17 / 33

Chapter 11 – Router Configuration Rev 39

##
#
Written by Dinesh Kandiah
Copyright (C) 2000 Point Clark Networks
#
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
Inspired by...
- Trinity OS
- Linux Security
- linux-firewall-tools.com
- Usenet
#
##
#
This configuration assumes the following setup:
#
1) The external interface is running on "ppp0" or "eth0"
2) The external IP addess is dynamically assigned
3) The internal IP Masqueraded network interface is "eth1"
#
##

#---
Setup
#---

Interfaces

LOOPBACKIF="lo"
LOOPBACKIP="127.0.0.1"
EXTIF="eth0"
INTIF="eth1"
INTLAN="192.168.1.0/24"

Double check our Internet connection
if [$EXTIF = "ppp0"]; then
 CHECK=`/sbin/ifconfig | grep ppp0 | awk '{ print $1 }'`
 if [-z $CHECK]; then
 echo "PPP Internet connection is down... exiting"
 # We do not have an Internet connection!
 # Send a broadcast message
 exit
 fi
fi

if [$EXTIF = "eth0"]; then
 CHECK=`/sbin/ifconfig | grep eth0 | awk '{ print $1 }'`
 if [-z $CHECK]; then
 echo "Internet connection is down... exiting"
 # We do not have an Internet connection!
 # Send a broadcast message
 exit
 fi
fi

HLUL11
© Dennis Rice

18 / 33

Chapter 11 – Router Configuration Rev 39

IP Mask for all IP addresses
UNIV="0.0.0.0/0"

IP Mask for broadcast transmissions
BROADCAST="255.255.255.255"

IP address of the external interface
EXTIP=`/sbin/ifconfig | grep -A 4 $EXTIF | awk '/inet/ { print $2 }' | sed
-e s/addr://`

Broadcast address of the external network
case "$EXTIF" in
ppp0)
EXTBROAD=`/sbin/ifconfig | grep -A 1 $EXTIF | awk '/inet/ { print $3 }' |
sed -e s/P-t-P://`
;;
eth0)
EXTBROAD=`/sbin/ifconfig | grep -A 1 $EXTIF | awk '/Bcast/ { print $3 }' |
sed -e s/Bcast://`
;;
esac

Specification of the high unprivileged IP ports.
UNPRIVPORTS="1024:65535"

Specification of X Windows System (TCP) ports:
XWINDOWS_PORTS="6000:6010"

Logging state
#LOG="-l"
LOG=" "

#---
Default Policies
#---
ipchains -P input REJECT
ipchains -P output REJECT
ipchains -P forward REJECT

Flushing all old rules and setting all default policies to REJECT
ipchains -F input
ipchains -F output
ipchains -F forward

#---
Masquerading Timeouts
#---
Set timeout values for masq sessions (seconds).
#
Item #1 - 2 hrs timeout for TCP session timeouts
Item #2 - 10 sec timeout for traffic after the TCP/IP "FIN" packet is
received
Item #3 - 60 sec timeout for UDP traffic
#
ipchains -M -S 7200 10 60

#---
General
#---

Enable IP Forwarding, if it isn't already
sysctl -w net.ipv4.ip_forward=1 >/dev/null

Disable IP spoofing attacks.
sysctl -w net.ipv4.conf.all.rp_filter=1 >/dev/null

HLUL11
© Dennis Rice

19 / 33

Chapter 11 – Router Configuration Rev 39

Enable always defragging
sysctl -w net.ipv4.ip_always_defrag=1 >/dev/null

Enable TCP SYN Cookie protection:
sysctl -w net.ipv4.tcp_syncookies=1 >/dev/null

Enabling dynamic TCP/IP address hacking.
sysctl -w net.ipv4.ip_dynaddr=1 >/dev/null

Disable ICMP broadcast echo protection
sysctl -w net.ipv4.icmp_echo_ignore_broadcasts=1 >/dev/null

Enable bad error message protection
sysctl -w net.ipv4.icmp_ignore_bogus_error_responses=1 >/dev/null

Disable ICMP Re-directs
sysctl -w net.ipv4.conf.all.accept_redirects=0 >/dev/null
sysctl -w net.ipv4.conf.all.send_redirects=0 >/dev/null

Ensure that source-routed packets are dropped
sysctl -w net.ipv4.conf.all.accept_source_route=0 >/dev/null

Log spoofed, source-routed, and redirect packets
sysctl -w net.ipv4.conf.all.log_martians=1 >/dev/null

#---
Masq Modules
#---
/sbin/modprobe ip_masq_autofw
/sbin/modprobe ip_masq_cuseeme
/sbin/modprobe ip_masq_ftp
/sbin/modprobe ip_masq_irc
/sbin/modprobe ip_masq_portfw
/sbin/modprobe ip_masq_quake
/sbin/modprobe ip_masq_raudio
/sbin/modprobe ip_masq_vdolive
/sbin/modprobe ip_masq_user
/sbin/modprobe ip_masq_icq

##
#
Input Rules
#
##

#---
Incoming Traffic on Internal LAN
#---

DHCP server
ipchains -A input -j ACCEPT -i $INTIF -p udp -s $UNIV bootpc -d $BROADCAST/0
bootps
ipchains -A input -j ACCEPT -i $INTIF -p tcp -s $UNIV bootps -d $BROADCAST/0
bootps

#---
Incoming Traffic from the External Interface
#---
Explicitly allow certain services

Dynamic IP address for ADSL or cable modem connection enabled.
ipchains -A input -j ACCEPT -i $EXTIF -p udp -s $UNIV bootps -d $BROADCAST/0
bootpc
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV bootps -d $BROADCAST/0
bootpc

ICMP: Allow ICMP packets from all external TCP/IP addresses.

HLUL11
© Dennis Rice

20 / 33

Chapter 11 – Router Configuration Rev 39

ipchains -A input -j ACCEPT -i $EXTIF -p icmp -s $UNIV -d $EXTIP

HTTP: Allow external users to connect to HTTP services.
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP www

SSH server: Allow external computers to connect to SSH services.
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP ssh

PortSentry: We let PortSentry find people scanning the system
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 1
ipchains -A input -j ACCEPT -i $EXTIF -p udp -s $UNIV -d $EXTIP 1
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 11
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 15
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 79
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 111
ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 119

Point Clark Networks: if you are going to use your firewall as
a mail server or FTP server, then uncomment the appropriate lines
below. You will need to uncomment the output rules further below!
You will also need to edit the /etc/hosts.allow and /etc/inetd.conf.

SMTP & FTP:
#ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP smtp
#ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP ftp
#ipchains -A input -j ACCEPT -i $EXTIF -p tcp -s $UNIV -d $EXTIP ftp-data

#---
Specific Input Rejections on the EXTERNAL interface
#---

IP spoofing and private/reserved networks
ipchains -A input -j REJECT -i $EXTIF -s $INTLAN -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s $LOOPBACKIP $LOG

Private and reserved networks
ipchains -A input -j REJECT -i $EXTIF -s 0.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 1.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 10.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 23.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 31.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 96.0.0.0/3 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 128.0.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 128.9.64.26/32 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 128.66.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 172.16.0.0/12 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 191.255.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 192.0.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 192.168.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 197.0.0.0/16 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 201.0.0.0/8 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 223.255.255.0/24 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 240.0.0.0/5 -d $UNIV $LOG
ipchains -A input -j REJECT -i $EXTIF -s 248.0.0.0/5 -d $UNIV $LOG

SMB and CIFS: Reject SMB and CIFS traffic FROM and TO external machines.
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 137
ipchains -A input -j REJECT -i $EXTIF -p udp -s $UNIV -d $EXTBROAD 137
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTBROAD 137
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 138
ipchains -A input -j REJECT -i $EXTIF -p udp -s $UNIV -d $EXTBROAD 138
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTBROAD 138
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 139
ipchains -A input -j REJECT -i $EXTIF -p udp -s $UNIV -d $EXTBROAD 139
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTBROAD 139
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 445

HLUL11
© Dennis Rice

21 / 33

Chapter 11 – Router Configuration Rev 39

ipchains -A input -j REJECT -i $EXTIF -p udp -s $UNIV -d $EXTBROAD 445
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTBROAD 445
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV 137 -d $EXTIP
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV 138 -d $EXTIP
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV 139 -d $EXTIP
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV 445 -d $EXTIP

NFS: Reject NFS traffic from and to external machines.
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV -d $EXTIP 2049
ipchains -A input -j REJECT -i $EXTIF -p tcp -s $UNIV 2049 -d $EXTIP

#---
Incoming Traffic on all Interfaces
#---

AUTH: Allow the authentication protocol, but disable it in
/etc/inetd.conf.
(For legacy TCP/IP stack issues).
ipchains -A input -j ACCEPT -p tcp -s $UNIV -d $UNIV auth
ipchains -A input -j ACCEPT -p tcp -s $UNIV auth -d $UNIV

#---
Incoming Traffic on the Internal LAN
#---

Local interface, local machines, going anywhere is valid.
ipchains -A input -j ACCEPT -i $INTIF -s $INTLAN -d $UNIV

Loopback interface is valid.
ipchains -A input -j ACCEPT -i $LOOPBACKIF -s $UNIV -d $UNIV

HIGH PORTS:
Enable all high unprivileged ports for all reply TCP/UDP traffic
ipchains -A input -j ACCEPT ! -y -p tcp -s $UNIV -d $EXTIP $UNPRIVPORTS
ipchains -A input -j ACCEPT -p tcp -s $UNIV ftp-data -d $EXTIP $UNPRIVPORTS
ipchains -A input -j ACCEPT -p udp -s $UNIV -d $EXTIP $UNPRIVPORTS

#--
-
Catch All Input Rule
#---
ipchains -A input -j REJECT -s $UNIV -d $UNIV $LOG

##
#
Output Rules
#
##

#---
Outgoing traffic on the Internal LAN
#---
Let everything out

Local interface, any source going to local net is valid.
ipchains -A output -j ACCEPT -i $INTIF -s $UNIV -d $INTLAN

Loopback interface is valid
ipchains -A output -j ACCEPT -i $LOOPBACKIF -s $UNIV -d $UNIV

#---
Outgoing Traffic on External Interface
#---
This will control what traffic can go out on the external interfaces.

Reject outgoing traffic to the local net from the remote interface,

HLUL11
© Dennis Rice

22 / 33

Chapter 11 – Router Configuration Rev 39

stuffed routing; deny & log
ipchains -A output -j REJECT -i $EXTIF -s $UNIV -d $INTLAN $LOG

Reject outgoing traffic from the local net from the external interface,
stuffed masquerading, deny and log
ipchains -A output -j REJECT -i $EXTIF -s $INTLAN -d $UNIV $LOG

DHCP:
ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $UNIV bootpc -d $UNIV
bootps
ipchains -A output -j ACCEPT -i $EXTIF -p udp -s $UNIV bootpc -d $UNIV
bootps

Allowing output for SSH and Web
ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $EXTIP ssh -d $UNIV
$UNPRIVPORTS
ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $EXTIP www -d $UNIV
$UNPRIVPORTS

Point Clark Networks: if you are going to use your firewall as
a mail server or FTP server, then uncomment the appropriate lines
below. You will need to do the same for the input rules above!
You will also need to edit the /etc/hosts.allow and /etc/inetd.conf.

SMTP & FTP:
#ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $UNIV smtp -d $UNIV
#ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $UNIV ftp -d $UNIV
#ipchains -A output -j ACCEPT -i $EXTIF -p tcp -s $UNIV ftp-data -d $UNIV

#---
Outgoing Traffic on all Interfaces
#---
Controls output traffic for all interfaces

AUTH: Allow the authentication protocol, but disable it in
/etc/inetd.conf.
(For legacy TCP/IP stack issues).
ipchains -A output -j ACCEPT -p tcp -s $UNIV auth -d $UNIV
ipchains -A output -j ACCEPT -p tcp -s $UNIV -d $UNIV auth

ICMP: Allow ICMP traffic out
ipchains -A output -j ACCEPT -p icmp -s $UNIV -d $UNIV

#---
Specific Output Rejections
#---
Reject traffic that you do not want out of the system.

Reject outgoing traffic to the local net from the remote interface,
stuffed routing; deny & log
ipchains -A output -j REJECT -i $EXTIF -s $UNIV -d $INTLAN $LOG

Reject outgoing traffic from the local net from the external interface,
stuffed masquerading, deny and log
ipchains -A output -j REJECT -i $EXTIF -s $INTLAN -d $UNIV $LOG

Samba
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 137 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 138 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 139 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 137 -d $UNIV 137
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 138 -d $UNIV 138
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 139 -d $UNIV 139
$LOG

HLUL11
© Dennis Rice

23 / 33

Chapter 11 – Router Configuration Rev 39

Mountd.
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 635 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 635 -d $UNIV $LOG

Remote Winsock.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 1745 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 1745 $LOG

NFS
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 2049 $LOG
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP 2049 -d $UNIV $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 2049 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 2049 -d $UNIV $LOG

PcAnywhere.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 5631 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 5631 $LOG
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 5632 $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV 5632 $LOG

Xwindows.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV
$XWINDOWS_PORTS $LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV
$XWINDOWS_PORTS $LOG

NetBsus.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 12345 $LOG
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV 12345 $LOG

NetBus Pro.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV/0 20034
$LOG

Back Orifice
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP -d $UNIV/0 31337
$LOG

Win Crash Trojan.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV/0 5742 $LOG

Socket De Troye.
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV/0 30303
$LOG

Unkown Trojan Horse (Master's Paradise [CHR])
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP -d $UNIV/0 40421
$LOG

Trinoo UDP flooder - Please note this port will probably change over time
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP 27665 -d $UNIV/0
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 27444 -d $UNIV/0
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 31335 -d $UNIV/0
$LOG

Shat distributed flooder - Please note this will probably change over time
ipchains -A output -j REJECT -i $EXTIF -p tcp -s $EXTIP 20432 -d $UNIV/0
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 18753 -d $UNIV/0
$LOG
ipchains -A output -j REJECT -i $EXTIF -p udp -s $EXTIP 20433 -d $UNIV/0
$LOG

#---

HLUL11
© Dennis Rice

24 / 33

Chapter 11 – Router Configuration Rev 39

Allow all High Ports for return traffic.
#---

ipchains -A output -j ACCEPT -p tcp -s $EXTIP $UNPRIVPORTS -d $UNIV
ipchains -A output -j ACCEPT -p udp -s $EXTIP $UNPRIVPORTS -d $UNIV

#---
Catch All Rule
#---
All other outgoing is denied and logged.
ipchains -A output -j REJECT -s $UNIV -d $UNIV $LOG

##
#
Forwarding
#
##

#---
Port Forwarding
#---

Uncomment this line if you want to port forward (flushes the portw table).
#ipmasqadm portfw -f

Web
#
Forward web traffic to an internal server (where xxx is the target IP).
You will also need to shut down the webserver running on this machine
as well as remove it from automatic startup, i.e.
/etc/rc.d/init.d/httpd stop
/sbin/chkconfig --del httpd
#
#ipmasqadm portfw -a -P tcp -L $EXTIP www -R 192.168.1.xxx www

FTP
#
Forward FTP traffic to an internal server (where xxx is the target IP).
You will also need to change the /etc/hosts.allow and /etc/inetd.conf
file.
#
#ipmasqadm portfw -a -P tcp -L $EXTIP ftp -R 192.168.1.xxx ftp
#ipmasqadm portfw -a -P tcp -L $EXTIP ftp-data -R 192.168.1.xxx ftp-data

Other

You can use the ipmasqadm tool for forwarding all sorts of other things
(read: games!). Go to http://www.tsmservices.com/masq/ for details.

#---
Enable TCP/IP forwarding and masquerading from the Internal LAN
#---

Masquerade from local net on local interface to anywhere.
ipchains -A forward -j MASQ -i $EXTIF -s $INTLAN -d $UNIV

Catch all rule, all other forwarding is denied.
ipchains -A forward -j REJECT -s $UNIV -d $UNIV $LOG

exit 0

end of script

HLUL11
© Dennis Rice

25 / 33

Chapter 11 – Router Configuration Rev 39

11.6 IP Tables Firewall
Since the original development of IP Chains, the process of setting up rules

for limiting the forwarding of packets has been updated, and is now called IP
Tables. IP Tables are quite similar to IP Chains in appearance, but does provide
enhanced system security by adding increased filtration, flexibility, and statefull
packet inspection. The benefit of IP Tables is that the same functionality may be
accomplished as in IP Chains with less code. This is because the Kernel was
improved to provide the enhanced security functions. What previously took 400
lines of code (shown previously), may now be accomplished in about 50 lines.
Considerably shorter and more powerful.

IP Tables (iptables) is composed of two components, netfilter and iptables.
The netfilter function operates in what is known as kernelspace. The iptables
function operates in what is known as userspace, and is used to set up,
maintain, and display the rulebase that is used by netfilter.

The best way to illustrate the operation of IP Tables is through an example
and explanation. We need to start with some definitions.

Chains are a set of three tables: Filter, Network Address Translation (NAT),
and Mangle. Each table has a set of rules.

Filter
A Filter is used to primarily to DROP or ACCEPT a packets
based on their content, but does not alter the packets. Builtin
chains are INPUT, FORWARD, and OUTPUT.

NAT
The Network Address Table (NAT) processes packets that are
modified by changing the address, such as used in
masquerading, specifically for altering the source and
destination address. Builtin chains include PREROUTING,
OUTPUT, and POSTROUTING. They are used with DNAT,
SNAT, and MASQUERADE targets only.

Destination NAT (DNAT)
Used to alter the destination address of an IP address of an
inbound packet from the Internet to a local host. DNAT is used
to initially set up the address modification.

Source NAT (SNAT)
Use to alter the source address of an IP address of an
outbound packet from a host to the Internet. SNAT is used to
initially set up the address modification.

Masquerade
Differs from SNAT in that it only checks for an IP address to
apply to outbound packets, most suitable for dynamic IP
addresses.

HLUL11
© Dennis Rice

26 / 33

Chapter 11 – Router Configuration Rev 39

MANGLE
This function is used to modify the Type of Service (TOS), Time
To Live (TTL), and to mark fields in a packet. Builtin chains
include PREROUTING and OUTPUT.

When a packet enters the router from either the local network or the Internet
(or other network), it is first given several sanity checks, including a checksum
verification. The packet is then forwarded to the PREROUTING (DNAT) chain,
where the destination address is changed if necessary.

The next step is for the packet to be routed, depending upon its destination
address. If the packet is destined for the local network, it is forwarded to the
INPUT chain, where is may be filtered (accepted, dropped, or tested for against
additional chains) or altered. Packets destined for the local network are
forwarded to the OUTPUT POSTROUTING chains, while those that are not, are
sent to the FORWARD and POSTROUTING chains, either of which allows each
packet to again be filtered or altered.

11.6.1 Using IPTables
The IPTables may be set up from the command line through a series of

commands. To a limited extent, they may also be set up using the X Windows
Security Level Configuration Window, as it does not provide all of the flexibility
available at the command line. The basic format of the command is:

iptables [-t table-name] Command Chain Packet-Criteria Rule-
Criteria Target

Table-name
Specifies the name of the table that is to be operated on –
FILTER, NAT, or MANGLE. If the Table-name is not specified,
the default of FILTER is used.

Command
Specifies what is do with the rest of the command line. These
include:
-A Addetes one or more rules.
-I Inserts as a rule to the end of the chain.
-D Del rule to the specified location. If the location is not

specified, then it is inserted at the beginning.
-R Replace the specified numbered rule with the designated

new rule.
-L Display the existing rules in the chain.

-v Verbose output, provides additional detail.
-n Displays IP Address and Port number rather than

names.
-x Displays exact packet and byte counts instead of

rounded values.
--line-numbers Displays line numbers with each

rule, used when modifying the rulebase.

HLUL11
© Dennis Rice

27 / 33

Chapter 11 – Router Configuration Rev 39

-F Delete ALL rules from the chain. If specified chain is
omitted, all rules of all chains are deleted.

-Z Change the value of all packet and byte counters to zero.
-X Delete a user defined chain.
-P Set the default target or policy for a builtin chain. The

policy is applied to packets that do not match an existing
rule in the specified chain. For a chain without a policy,
unmatched packets are ACCEPTed.

-E Renames a chain.
-h Displays a help screen for the syntax of the iptables

command.

Chain
Designates the specific chain that is to be processed, FILTER,

NAT, or MANGLE.

Patch-Criteria
Specifies the match criteria that is to be applied to packets.
-p Match specified protocol.
-s Match specified source address.
-d Match specified destination address.
-i Match the specified input interface for the criteria. Used

for INPUT, FORWARD, and PREROUTING chains.
-o Match the specified output interface for the criteria.

Used for FORWARD, OUTPUT, and POSTROUTING
chains.

-f Matches fragmented packets to specified criteria, as they
do not contain the source or destination address, or other
specified rules.

-j Specifies the jump target of the rule. That is, what is to
happen to the packet if the criteria is matched.

Rule-Criteria
Specifies rules that are to be applied.
-p Loads specified protocol module to match packets with

specified protocol.
tcp Specifies the TCP protocol.

--dport Matches the destination port number or
service name (/etc/services file)

--sport Matches the source port number or service
name.

--syn Matches packets with the SYN bit set and
bot the ACK and FIN bits cleared. It is
equivalent to –tcp-flags
SYN,RST,ACK,SYN

--tcp-flag Specifies the TCP flag settings that
constitute a match. Valid flags are SYN,
ACK, FIN, RST, URG, PSH, ALL, NONE.

HLUL11
© Dennis Rice

28 / 33

Chapter 11 – Router Configuration Rev 39

--tcp-option Matches TCP options based on the decimal
value.

udp Specifies the UDP protocol. Options are identical to
TCP.

icmp Specifies icmp type packets (ping and network status
messages).
--icmp-name Matches icmp packets of the type named.

To determine the types, issue the
command:
iptables -p icmp -h

--state Matches the packet against the specified
state.

ESTABLISHED A connection that has been established.
INVALID A stateless or unidentifiable packet.
NEW A new connection packet, normally specified

by a SYN packet.
RELATED Any packet exchange that has been

ESTABLISHED.
Target

Specifies what happens to the packet, depending upon the
matching against one of the rules.
ACCEPT Continues to process the packet.
DNAT Rewrites the destination address of a packet.

--to-destination Specifies the IP Address and Port (if
applicable).

SNAT Rewrites the source address of a packet.
--to-source Specifies the IP Address and Port (if

applicable).
DROP Kills the packet, without notice to the originator.
LOG Logs specified type of packet types.

--og-level Specifies logging level as specified
in /etc/syslog.conf.

--log-prefix Prefixes log entries with the
specified string.

--log-tcp-options Logs options from the TCP
packet header.

--log-ip-options Logs options from the IP
packet header.

MASQUERADE Similar to SNAT with the –to-source.
REJECT Kills the packet, with notification to the originator.
RETURN Terminates this chain and returns packet to

originating chain.

Additional options are available, one should refer to the man page.

11.6.2 A Working IP Table Filter
The following listing, provided by Clark Connect of an operation system, is a
working configuration of an IP Table.

HLUL11
© Dennis Rice

29 / 33

Chapter 11 – Router Configuration Rev 39

iptables -L --line-numbers
Chain INPUT (policy DROP)
num target prot opt source destination
1 DROP all -- c-67-186-31-47.hsd1.pa.comcast.net anywhere
2 ACCEPT icmp –- anywhere anywhere icmp echo-reply
3 ACCEPT icmp –- anywhere anywhere icmp destination-unreachable
4 ACCEPT icmp –- anywhere anywhere icmp time-exceeded
5 ACCEPT icmp –- anywhere anywhere icmp echo-request
6 DROP icmp –- anywhere anywhere
7 ACCEPT udp –- anywhere anywhere udp dpt:domain
8 ACCEPT udp -- anywhere anywhere state ESTABLISHED udp spt:domain
9 DROP udp –- anywhere anywhere udp spt:domain
10 DROP all -– anywhere anywhere state INVALID
11 REJECT tcp -– anywhere anywhere tcp flags:SYN,ACK/SYN,ACK state NEW reject-with tcp-reset
12 DROP tcp –- anywhere anywhere tcp flags:!SYN,RST,ACK/SYN state NEW
13 ACCEPT all – anywhere anywhere
14 ACCEPT all – anywhere anywhere
15 drop-reserved all -- 127.0.0.0/8 anywhere
16 drop-reserved all -- 2.0.0.0/8 anywhere
17 drop-reserved all -- 96.0.0.0/3 anywhere
18 drop-reserved all -- 169.254.0.0/16 anywhere
19 drop-reserved all -- 223.0.0.0/8 anywhere
20 drop-reserved all -- BASE-ADDRESS.MCAST.NET/4 anywhere
21 drop-reserved all -- 240.0.0.0/4 anywhere
22 ACCEPT udp –- anywhere 67.187.114.236 udp spt:bootps dpt:bootpc
23 ACCEPT tcp –- anywhere 67.187.114.236 tcp spt:bootps dpt:bootpc
24 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpt:ftp-data
25 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpt:ftp
26 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpt:ssh
27 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpt:http
28 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpt:1875
29 ACCEPT udp -- anywhere 67.187.114.236 udp dpts:1024:65535 state RELATED,ESTABLISHED
30 ACCEPT tcp –- anywhere 67.187.114.236 tcp dpts:1024:65535 state RELATED,ESTABLISHED
31 DROP all –- anywhere anywhere

Chain FORWARD (policy DROP)
num target prot opt source destination
1 DROP all –- c-67-186-31-47.hsd1.pa.comcast.net anywhere
2 ACCEPT all –- anywhere anywhere
3 ACCEPT all –- anywhere anywhere state RELATED,ESTABLISHED
4 DROP all –- anywhere anywhere

Chain OUTPUT (policy DROP)
num target prot opt source destination
1 ACCEPT icmp –- anywhere anywhere
2 ACCEPT all –- anywhere anywhere
3 ACCEPT all –- anywhere anywhere
4 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:bootpc dpt:bootps
5 ACCEPT udp –- 67.187.114.236 anywhere udp spt:bootpc dpt:bootps
6 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:ftp-data
7 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:ftp
8 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:ssh
9 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:http
10 ACCEPT tcp –- 67.187.114.236 anywhere tcp spt:1875
11 ACCEPT all –- 67.187.114.236 anywhere
12 DROP all –- anywhere anywhere

Chain drop-lan (0 references)
num target prot opt source destination
1 DROP all –- anywhere anywhere

Chain drop-reserved (7 references)
num target prot opt source destination
1 DROP all –- anywhere anywhere

11.X Commands Used in this Chapter

11.Y Chapter Review Questions

HLUL11
© Dennis Rice

30 / 33

Chapter 11 – Router Configuration Rev 39

HLUL11
© Dennis Rice

31 / 33

Chapter 11 – Router Configuration Rev 39

Chapter Index
C

chains 12
D

Demilitarized Zone 12
dmesg 3
Dual Ethernet 3
Dual Ethernet Router 4
Dynamic Routing 5

E
Ethernet HOWTO 3

F
File

/etc/conf.modules 3
/etc/lilo.conf 4
/etc/services 28
/etc/sysconfig/network 11
/etc/syslog.conf 29
/proc/net/ip_fwchains 10

Firewall
filtering 12

Firewall Background 12
Firewall Network 12
FORWARD_IPV4 11

G
Gateway Address 4

I
Installation of Two NIC Cards 5
IP Address 4
IP Chains Firewall 12
IP Forwarding 11
IP Masquerading 10
IP Tables 26

Chain 28
Command 27
DNAT 26
Filter 26
Generic Command 27
Mangle 27
Masquerade 26
Masquerading 26
NAT 26
Patch-Criteria 28
Rule-Criteria 28
SNAT 26
Table-name 27

IPChains
A Working Filter 17
Accept 10
Action 13
Chain 13

Accept 14
Condition 14
Deny 14
Forward 13
Input 13
Masquerade 15
Output 13
Policy 14
Redirect 15
Reject 15
Return 15

Deny 10
Masq 10
Reject 10
Setting up a Filtering Firewall 15

iptables 26
K

Kernelspace 26
M

Masquerading 10
modprobe 3
Modprobe 3

N
Netfilter 26
Network Address Translation Router 9
Network File

DOMAINNAME 11
FORWARD_IPV4 11
GATEWAY 11
GATEWAYDEV 11
HOSTNAME 11
NETWORKING 11

P
Private Network 12
Program

diald 12
ipchains 12

R
route

add -add / netmask 9

HLUL11
© Dennis Rice

32 / 33

Chapter 11 – Router Configuration Rev 39

add -net 9
add default 9
Destination 7
Flags 8
Gateway 7
Genmask 8
Interface 8
Metric 8
References 8
Use 8

rules 12
S

Static Routing 5

U
URL

clarkconnect.org 17
ipmasq.cjb.net 11

Userspace 26
Utility

ifconfig 7
ipchains 11
ipfw 11
modprobe 3
netcfg 6
route 7

HLUL11
© Dennis Rice

33 / 33

	Router Configuration
	11.1	Dual Ethernet
	11.1.1	IP Address
	11.1.2	Gateway Address

	11.2	Dual Ethernet Router
	11.2.1	Equipment Requirements
	11.2.2	Objective 1: Installation of Two NIC cards

	11.3	Route Command
	11.3.1	Examples of usage

	11.4	Network Address Translation Router (NAT)
	11.4.1	IP Masquerading1,2
	11.4.2	IP Forwarding (Not Complete)

	11.5	IP Chains Firewall3,4,5
	11.5.1	Firewall Background
	11.5.1.1	Action
	11.5.1.2	Chain
	11.5.1.2.1	Input
	11.5.1.2.2	Forward
	11.5.1.2.3	Output
	11.5.1.2.4	Condition
	11.5.1.2.5	Policy
	11.5.1.2.6	Accept
	11.5.1.2.7	Deny
	11.5.1.2.8	Reject
	11.5.1.2.9	Masquerade
	11.5.1.2.10	Redirect
	11.5.1.2.11	Return

	11.5.1.3	Setting up a Filtering Firewall
	11.5.1.3.1	Simple Filter

	11.5.2	A Working Filter

	11.6	IP Tables Firewall
	11.6.1	Using IPTables

	11.X	Commands Used in this Chapter
	11.Y	Chapter Review Questions

