
Chapter 20 – Programming and Scripting Rev. 12

Chapter 20

Programming and Scripting

This chapter introduces the user to a comparison to various programming and
scripting techniques. Examples are shown to highlight the differences between
the various alternatives, showing where each might be stronger than another.

Concepts Learned in this Chapter
➢ Basic Scripting
➢ Various higher level programs that are available on Linux

HLUL20
© Dennis Rice

1 / 24

Chapter 20 – Programming and Scripting Rev. 12

Table of Contents
Programming and Scripting... 1

20.1 Stream Editor ... 3
20.1.1 Command Syntax.. 3
20.1.2 Sed Examples.. 6

20.2 Awk and Gawk ... 7
20.3 Script Programming , .. 9

20.3.1 Elementary Commands .. 9
20.3.1.1 Echo Command ... 9
20.3.1.2 Quotation Marks .. 10
20.3.1.3 Variables .. 11
20.3.1.4 Comparison Variables ... 11
20.3.1.5 User Input Arguments .. 12
20.3.1.6 Conditional Statements .. 13

20.3.2 Computational Commands .. 19
20.3.3 Running a Script ... 20

20.3.2.1 Bash Script .. 20
20.3.2.2 Stand-alone Execution ... 20

20.4 Command Line Interpreter Programs .. 21
20.4.1 Perl Programming Language .. 21
20.4.2 Python Programming Language ... 21

20.5 Compiled Programs ... 22
20.5.1 C Programming Language .. 22
20.5.2 C++ Programming Language .. 22
20.5.3 Fortran Programming Language ... 22

20.6 Web Based Languages .. 22
20.6.1 PHP Programming Language ... 22
20.6.2 Java Programming Language ... 23
20.6.3 Ruby Programming Language .. 23

20.7 Machine Language Programming .. 23
20.8 Commands Used in this Chapter.. 23
20.9 Chapter Review Questions.. 23

HLUL20
© Dennis Rice

2 / 24

Chapter 20 – Programming and Scripting Rev. 12

To say the least, being able to program using various languages is very
important to obtain the full benefit of an operating system. Unix and Linux
normally contain many of the popular languages by default, assuming that they
have been installed. The following is a short list, and some of the attributes of
the languages.

It is not the intent to teach how to use the languages, but rather to learn some
their attributes and that they are available.

20.1 Stream Editor
One of the strongest applications that is available for Unix and Linux is the

Stream Oriented Editor, or sed. Sed is a non-interactive editor that takes its
commands either from the command line or from a command file. Because sed
is an editor, one might ask why is it considered in a programming chapter – that
is because it has a set of commands that need to be learned. These are
scripting directives. Only a very simple discussion of the power of sed will be
discussed, as books have been written on the topic.

The objective of sed is to enact a set of commands against each line of data.
A data file is read into a memory buffer, and then all of the sed commands are
issued against each individual line of the data file. The objective of sed is to be
able to repetitively issue a set of commands on each line of one or more files.
After one line is processed, the next line processed. The output will be to the
standard output (monitor) unless the output is redirected.

The two forms of the command are: 1

1. sed “sed-commands” input-file > output-file
2. sed –f sed-script-file input-file > output-file

In both of these cases, the output is saved to a new file.

20.1.1 Command Syntax
All versions of sed support Basic Regular Expressions (BREs).
A SED program consists of one or more SED commands, passed in by one

or more of the -e, -f, --expression, and --file options, or the first non-option
argument if zero of these options are used. This document will refer to "the" SED
script; this will be understood to mean the in-order catenation of all of the scripts
and script-files passed in.

Each SED command consists of an optional address or address range,
followed by a one-character command name and any additional command-
specific code. 2

Addresses in a SED script can be in any of the following forms:
Addresses
`number'

1 http://sed.sourceforge.net/sedfaq.html
2 http://www.gnu.org/software/sed/manual/html_mono/sed.html

HLUL20
© Dennis Rice

3 / 24

http://sed.sourceforge.net/sedfaq.html
http://www.gnu.org/software/sed/manual/html_mono/sed.html

Chapter 20 – Programming and Scripting Rev. 12

Specifying a line number will match only that line in the input. (Note that
SED counts lines continuously across all input files.)

`first~step'
This GNU extension matches every stepth line starting with line first. In
particular, lines will be selected when there exists a non-negative n such
that the current line-number equals first + (n * step). Thus, to select the
odd-numbered lines, one would use 1~2; to pick every third line starting
with the second, 2~3 would be used; to pick every fifth line starting with
the tenth, use 10~5; and 50~0 is just an obscure way of saying 50.

`$'
This address matches the last line of the last file of input.

`/regexp/'
This will select any line which matches the regular expression regexp. If
regexp itself includes any / characters, each must be escaped by a
backslash (\).

`\%regexp%'
(The % may be replaced by any other single character.) This also
matches the regular expression regexp, but allows one to use a different
delimiter than /. This is particularly useful if the regexp itself contains a lot
of /s, since it avoids the tedious escaping of every /. If regexp itself
includes any delimiter characters, each must be escaped by a backslash
(\).

`/regexp/I'
`\%regexp%I'

The I modifier to regular-expression matching is a GNU extension which
causes the regexp to be matched in a case-insensitive manner.

If no addresses are given, then all lines are matched; if one address is given,
then only lines matching that address are matched.

The use of sed requires knowledge of these basic commands:

Comment
`#'

[No addresses allowed.] The # "command" begins a comment; the
comment continues until the next newline. If you are concerned about
portability, be aware that some implementations of SED (which are not
POSIX.2 conformant) may only support a single one-line comment, and
then only when the very first character of the script is a #. Warning: if the
first two characters of the SED script are #n, then the -n (no-autoprint)
option is forced. If you want to put a comment in the first line of your script
and that comment begins with the letter `n' and you do not want this
behavior, then be sure to either use a capital `N', or place at least one
space before the `n'.

Substitute
`s/regexp/replacement/flags'

HLUL20
© Dennis Rice

4 / 24

Chapter 20 – Programming and Scripting Rev. 12

(The / characters may be uniformly replaced by any other single character
within any given s command.) The / character (or whatever other
character is used in its stead) can appear in the regexp or replacement
only if it is preceded by a \ character. Also newlines may appear in the
regexp using the two character sequence \n. The s command attempts to
match the pattern space against the supplied regexp. If the match is
successful, then that portion of the pattern space which was matched is
replaced with replacement. The replacement can contain \n (n being a
number from 1 to 9, inclusive) references, which refer to the portion of the
match which is contained between the nth \(and its matching \). Also, the
replacement can contain un-escaped & characters which will reference
the whole matched portion of the pattern space. To include a literal \, &, or
newline in the final replacement, be sure to precede the desired \, &, or
newline in the replacement with a \. The s command can be followed with
zero or more of the following flags:

Apply All Matches
`g'

Apply the replacement to all matches to the regexp, not just the first.

Print New Pattern
`p'

If the substitution was made, then print the new pattern space.

Replace Numbered Lines
`number'

Only replace the numberth match of the regexp.

Write result to named file
`w file-name'

If the substitution was made, then write out the result to the named file.

Match Case-Insensitive
`I'

(This is a GNU extension.) Match regexp in a case-insensitive manner.

Terminate and Exit
`q'

[At most one address allowed.] Exit SED without processing any more
commands or input. Note that the current pattern space is printed if auto-
print is not disabled.

Delete Pattern Space
`d'

Delete the pattern space; immediately start next cycle.

Print Pattern Space

HLUL20
© Dennis Rice

5 / 24

Chapter 20 – Programming and Scripting Rev. 12

`p'
Print out the pattern space (to the standard output). This command is
usually only used in conjunction with the -n command-line option. Note:
some implementations of SED, such as this one, will double-print lines
when auto-print is not disabled and the p command is given. Other
implementations will only print the line once. Both ways conform with the
POSIX.2 standard, and so neither way can be considered to be in error.
Portable SED scripts should thus avoid relying on either behavior; either
use the -n option and explicitly print what you want, or avoid use of the p
command (and also the p flag to the s command).

Print Pattern Space and Replace
`n'

If auto-print is not disabled, print the pattern space, then, regardless,
replace the pattern space with the next line of input. If there is no more
input then SED exits without processing any more commands.

Multiple Command Input
`{ commands }'

A group of commands may be enclosed between { and } characters. (The
} must appear in a zero-address command context.) This is particularly
useful when you want a group of commands to be triggered by a single
address (or address-range) match.

Append
`a\' `text'

Append text to specified location.

Insert
`i\' `text'

Immediately output the lines of text which follow this command (each but
the last ending with a \, which will be removed from the output).

20.1.2 Sed Examples
The following are some examples of using sed

Double space a file
sed G file

Triple space a file
sed 'G;G' file

Under UNIX: convert DOS newlines (CR/LF) to Unix format
sed 's/.$//' file # assumes that all lines end with CR/LF
sed 's/^M$// file # in bash/tcsh, press Ctrl-V then Ctrl-M

Under DOS: convert Unix newlines (LF) to DOS format
sed 's/$//' file # method 1

HLUL20
© Dennis Rice

6 / 24

Chapter 20 – Programming and Scripting Rev. 12

sed -n p file # method 2

Delete leading whitespace (spaces/tabs) from front of each line
(this aligns all text flush left). '^t' represents a true tab
character. Under bash or tcsh, press Ctrl-V then Ctrl-I.
sed 's/^[^t]*//' file

Delete trailing whitespace (spaces/tabs) from end of each line
sed 's/[^t]*$//' file # see note on '^t', above

Delete BOTH leading and trailing whitespace from each line
sed 's/^[^t]*//;s/[^]*$//' file # see note on '^t', above

Substitute "foo" with "bar" on each line
sed 's/foo/bar/' file # replaces only 1st instance in a line
sed 's/foo/bar/4' file # replaces only 4th instance in a line
sed 's/foo/bar/g' file # replaces ALL instances within a line

Substitute "foo" with "bar" ONLY for lines which contain "baz"
sed '/baz/s/foo/bar/g' file

Delete all CONSECUTIVE blank lines from file except the first.
This method also deletes all blank lines from top and end of file.
(emulates "cat -s")
sed '/./,/^$/!d' file # this allows 0 blanks at top, 1 at EOF
sed '/^$/N;/\n$/D' file # this allows 1 blank at top, 0 at EOF

Delete all leading blank lines at top of file (only).
sed '/./,$!d' file

Delete all trailing blank lines at end of file (only).
sed -e :a -e '/^\n*$/{$d;N;};/\n$/ba' file

If a line ends with a backslash, join the next line to it.
sed -e :a -e '/\\$/N; s/\\\n//; ta' file

If a line begins with an equal sign, append it to the previous
line (and replace the "=" with a single space).
sed -e :a -e '$!N;s/\n=/ /;ta' -e 'P;D' file

20.2 Awk and Gawk
awk, or the newer version called gawk, is a simple programming paradigm –

find a pattern in the input and then perform an action –often reduced complex or
tedious data manipulations to few lines of code. The name awk comes from the

HLUL20
© Dennis Rice

7 / 24

Chapter 20 – Programming and Scripting Rev. 12

initials of its designers: Alfred V. Aho, Peter J. Weinberger and Brian W.
Kernighan.3

There are several ways to run an awk program. If the program is short, it is
easiest to include it in the command that runs awk, like this:

awk 'program' input-file1 input-file2 ...

When the program is long, it is usually more convenient to put it in a file and
run it with a command like this:

awk –f program-file input-file1 input-file2 ...

A comment is some text that is included in a program for the sake of human
readers; it is not really an executable part of the program. Comments can explain
what the program does and how it works. Nearly all programming languages
have provisions for comments, as programs are typically hard to understand
without them.

In the awk language, a comment starts with the sharp or pound sign character
(#) and continues to the end of the line. The # does not have to be the first
character on the line. The awk language ignores the rest of a line following a
sharp sign. For example:

This program prints a nice friendly message. It helps
keep novice users from being afraid of the computer.
BEGIN { print "Don't Panic!" }

For short to medium length awk programs, it is most convenient to enter the
program on the awk command line. This is best done by enclosing the entire
program in single quotes. This is true whether you are entering the program
interactively at the shell prompt, or writing it as part of a larger shell script:

awk 'program text' input-file1 input-file2 ...

Once you are working with the shell, it is helpful to have a basic knowledge of
shell quoting rules. The following rules apply only to POSIX-compliant, Bourne-
style shells (such as bash, the GNU Bourne-Again Shell). If you use csh, you're
on your own.

➢ Quoted items can be concatenated with non-quoted items as well
as with other quoted items. The shell turns everything into one
argument for the command.

➢ Preceding any single character with a backslash (\) quotes that
character. The shell removes the backslash and passes the quoted
character on to the command.

➢ Single quotes protect everything between the opening and closing
quotes. The shell does no interpretation of the quoted text, passing
it on verbatim to the command. It is impossible to embed a single
quote inside single-quoted text. Refer back to Comments, for an
example of what happens if you try.

➢ Double quotes protect most things between the opening and
closing quotes. The shell does at least variable and command

3 http://www.gnu.org/software/gawk/manual/html_mono/gawk.html

HLUL20
© Dennis Rice

8 / 24

http://www.gnu.org/software/gawk/manual/html_mono/gawk.html#Comments
http://www.gnu.org/software/gawk/manual/html_mono/gawk.html

Chapter 20 – Programming and Scripting Rev. 12

substitution on the quoted text. Different shells may do additional
kinds of processing on double-quoted text.

Since certain characters within double-quoted text are processed by the shell,
they must be escaped within the text. Of note are the characters $, `, \, and ", all
of which must be preceded by a backslash within double-quoted text if they are
to be passed on literally to the program. (The leading backslash is stripped first.)
The following example illustrates this concept:

$ awk "BEGIN { print \"Don't Panic!\" }"
outputs:
-| Don't Panic!

Note that the single quote is not special within double quotes.
➢ Null strings are removed when they occur as part of a non-null

command-line argument, while explicit non-null objects are kept.
For example, to specify that the field separator FS should be set to
the null string, use:
awk -F "" 'program' files # correct

20.3 Script Programming 4 , 5
Each of the shells within Unix and Linux maintain a basic programming

capability. This level of programming, which may be performed directly from the
command line, are called scripts. They are typically very simple, but are
capable of immense power. Since the default shell for Linux is bash, we will
review some of the basic powers of the language. Although scripting is a very
powerful language, it has many attributes, of which only a small fraction of which
are able to be discussed here.

Both Unix and Linux rely very heavily on a multitude of scripts during the boot
process, which perform a number of branches to enable various processes and
services. The user may also expand upon the basic process by creating scripts
to do repetitive tasks.

20.3.1 Elementary Commands
We will review a short list of the most common commands available, and

some of the special coding required.

20.3.1.1 Echo Command
Before one gets into actual programming commands, a review of the one

command that outputs to the stdout (monitor) is required. This is important
because it is the primary means to display information on the screen. The
syntax of the command is:

echo (option) “text to be displayed”

Options include:

4 http://www.gnu.org/software/bash/manual/bashref.html
5 Hello Linux, by Clyde Boom, Lancom Technologies, ISBN 1-896814-22-0

HLUL20
© Dennis Rice

9 / 24

http://www.gnu.org/software/bash/manual/bashref.html

Chapter 20 – Programming and Scripting Rev. 12

-n Do not output the training newline
- the newline is equivalent to a carriage return (CR) and linefeed
(LF), where the cursor is moved to the beginning of the next
line.

-e Enable interpretation of the backslash-escaped characters
(explained below

-E Disable interpretation of the backslash-escaped characters in
strings (in quotes)

Escape characters include (when the –E option is not specified):
\NNN The character whose ASCII code is NNN (specified in octal)
\\ Keep the backslash character in the text
\a Alert – ring the bell
\b Backspace the cursor one character
\c Suppress trailing newline at the end of the input
\f Issue a form feed to start a new page
\n Start a newline (Carriage Return + Line Feed)
\r Issue a Carriage Return only without a Line Feed
\t Issue a horizontal tab
\v Issue a vertical tab

20.3.1.2 Quotation Marks
In order to insure the proper stdout (monitor) display in conjunction with the

echo command, we need to use quotation marks. There are three different
types quotation marks available.

➢ Single Quotes – ‘ ’ Used around text that is to be displayed as it is
written. For example:

echo ‘You are user $USER’ returns
You are user $USER

Here the variable $USER is not replaced.
➢ Backtick – ` ` Used around commands that are to be

processed. For example:
echo “Today’s date is `date` ” returns
Today’s date is Mon Feb 16 10:36 CST 2004

In this case, the command “date” is issued and the date and time is
returned.

➢ Double Quotes – “ ” Used around text where variables are to
be processed. For example:

echo “You are user $USER and today is `date`”
You are user dennis and today is Mon Feb 16 10:40 CST
2004

In this example, the variable $USER is displayed and the command
date is enacted.

HLUL20
© Dennis Rice

10 / 24

Chapter 20 – Programming and Scripting Rev. 12

20.3.1.3 Variables
Variables may be assigned within a script, or the Environmental variables

may be used. Environmental variables are preset and may be viewed by using
the env command.

To set a user variable, the user specifies that the specified variable name is
equal to what they wish. The value may be either a word or a numeric value.

mday = Monday
tday = Tuesday
wday = Wednesday

To display the variable, the variable name is preceded with the ‘$’, such as:
echo Today is $mday
Today is Monday
echo Tomorrow is $tday
Tomorrow is Tuesday

One must be cautious when using double quotes because extra spaces or
tab characters included in a variable are truncated to only one space. For
example if the variable is:

wdays1 = Monday Tuesday Wednesday Thursday Friday
wdays2 = “Monday Tuesday Wednesday Thursday
Friday”
echo wdays1
Monday Tuesday Wednesday Thursday Friday
echo wdays2
Monday Tuesday Wednesday Thursday Friday

20.3.1.4 Comparison Variables
Variables may be tested to determine if a condition exists.

➢ Directory and File Comparison
-a item True if file exists
-b item True if the file exists and it is of type block
-c item True if the file exists and it is of type character
-d item True if the item exists and is a directory
-e item True if the item (directory or file) exists
-f item True if the item exists and is a regular file
-g item True if the item exists and its set-group-id is set
-k item True if the item exists and its sticky bit is set
-h item True if the item exists and it is a symbolic link
-r item True if the item exists and it is readable
-s item True if the item exists and the length is greater than

zero
-u item True if the item exists and the set-user-id bit is set
-w item True if the item exists and the file is writeable
-x item True if the item exists and is executable
-G item True if the item exists and is owned by the effective

group that the user is a member of

HLUL20
© Dennis Rice

11 / 24

Chapter 20 – Programming and Scripting Rev. 12

-O item True if the item exists and is owned by the current
logged in user

➢ Numerical Comparison
-eq True if first number is equal to second
-ne True if first number is not equal to second
-gt True if first number is greater than second
-ge True if first number is greater than or equal to second
-lt True if first number is less than second
-le True if first number is less than or equal to second

➢ String Comparison
$string1 = $string2True if string1 is equal to string2
$string1 != $string2 True if string1 is not equal to string2
-n $string True if string is of non-zero length
-z $string True if string is of zero length

➢ Logical Comparison
! expression True if the expression is FALSE

False if the expression is TRUE
expression1 -a expression2 True if expression1 AND

expression2 are both TRUE, -a represents the logical
AND function

expression1 -o expression2 True if expression1 OR
expression2 is TRUE, -o represents the logical OR
function

If a test for a condition is to be performed prior to performing a task, then the
following format may be utilized:

[-f path1/file1] && . /path2/command

This form has the following meaning
[-f path1/file1] Test to see if file1 in path exists
&& Conditional AND, perform the following if the previous

condition is true
“.” (space) Run the following command specified by
/path2/command Command or script to be executed

20.3.1.5 User Input Arguments
Quite often, a command is followed by arguments that are specified by the

user. Special characters are assigned to specify the command arguments. As
an example, assume that a script by the name of display has been written to
echo the arguments that follow it, such as:

Script display
echo “$0” Displays the original command or script name
echo “$1” Displays the first argument
echo “$2” Displays the second argument
echo “$3” Displays the third argument
echo “$@” Displays all of the arguments
echo “$#” Displays the number of arguments

HLUL20
© Dennis Rice

12 / 24

Chapter 20 – Programming and Scripting Rev. 12

Using the script:
Script display
echo “$0”
echo “$1”
echo “$2”
echo “$3”
echo “$@”
echo “$#”

Thus if we issue the command:
$display red blue green

the output is:
display
red
blue
green
red blue green
3

20.3.1.6 Conditional Statements
Several conditions commands are available to test a value and then execute

only if true.

20.3.1.6.1 For Loop for . . . in . . . do
The for loop will repetitively cycle through a list of arguments. The syntax of

the conditional statement is:
for Loop-Index in Argument-List
do
 statements to be performed
done

This performs the following actions:
1. Loop-Index is a range or list of items to be sorted through
2. Argument-List is a list of items that are to be tested
3. Statements is a list of commands that are to be performed

As an example:
Script colorlist
for colors in red blue green
do
 echo “$colors”
done

HLUL20
© Dennis Rice

13 / 24

Chapter 20 – Programming and Scripting Rev. 12

Outputs the following:
$ colorlist
red
blue
green

20.3.1.6.2 If Condition if . . . then
The if condition tests a conditional clause, and if true then proceeds with the

statements. If the condition is false, the statements are skipped. The syntax of
the conditional statement is:

if condition-statement
then
 statements to be performed
fi

This performs the following actions:
1. Tests the condition-statement
2. If condition-statement is true, then
3. Perform ‘statements to be performed’
4. If condition statement is false, then exit

As an example:
Script dirlab
if [-x /lab]
then
 echo The directory /lab exists
fi

Outputs the following:
$ dirlab
The directory /lab exists

20.3.1.6.3 If Else Condition if . . . then . . . else
The if – else condition tests the conditional clause. If true the first set of

statements is completed, but if false, the second set of statements is completed.
The syntax of the conditional statement is:

if condition
then
 first statements to be performed
else
 second statements to be performed
fi

This performs the following actions:
1. Tests the condition-statement
2. If condition-statement is true, then
3. Perform ‘first statements to be performed’

HLUL20
© Dennis Rice

14 / 24

Chapter 20 – Programming and Scripting Rev. 12

4. If condition statement is false, then divert to the else section
5. Perform ‘second statements to be performed’
6. Exit

As an example:
Script truestate
string1 = “today”
string2 = “tomorrow”
if [$string1 = $string2]
then
 echo “$string1 and $string2 are the same”
else
 echo “$string1 and $string2 are not the same”
fi

Outputs the following:
$ truestate
today and tomorrow are not the same

20.3.1.6.4 If – ElseIf Condition if . . . then . . . elif
The if – elif condition tests the first condition and if true, performs the first

statements. If it is false, the embedded second if condition is enacted, testing
the second condition, which if true then the second set of statements is enacted.
The syntax of the conditional statement is:

if condition1
then
 first statements to be performed
 elif condition2
 then
 second statements to be performed
fi

This performs the following actions:
1. Tests the condition1 statement
2. If condition1 is true, then
3. Perform ‘first statements to be performed’
4. Exits if condition
5. If condition1 is false, then drop to secondary conditional test
6. If condition2 is true, then
7. Perform ‘second statements to be performed’
8. Exits if condition
9. If condition2 is false, then exit if condition

This is a “nested” conditional test. If the condition is true, run the first
statements, if the condition is false, then run the second statements.

As an example:

HLUL20
© Dennis Rice

15 / 24

Chapter 20 – Programming and Scripting Rev. 12

Script truestate
string1 = “today”
string2 = “tomorrow”
string3 = “today”
if [$string1 = $string2]
then
 echo “$string1 and $string2 are the same”
 elif [$string1 = $string3]
 then
 echo “$string1 and $string3 are the same”
fi

Outputs the following:
$ truestate
today and today are the same

This performs the following actions:
1. Tests the condition1 statement
2. If condition1 is true, then
3. Perform ‘first statements to be performed’
4. Exits if condition
5. If condition1 is false, then test if second condition2 is true,
6. If condition 2 is true, then
7. Perform ‘second statements to be performed’
8. Exits if condition
9. If condition2 is false, then exit if condition

Nested conditions may be set to any depth that is required – but may be
confusing if more than three. Each nesting may also be combined with the else
condition, although the else applies to the preceding conditional test.

20.3.1.6.5 While Loop while . . . do
The while loop process a set of statements while the specified condition is

true. The syntax of the conditional statement is:
while condition
do
 statements to be performed
done

This performs the following actions:
1. The condition is tested, if true then
2. Perform the ‘statements to be performed’

If condition is false, then exit

As an example:
Script weekday
today = mon

HLUL20
© Dennis Rice

16 / 24

Chapter 20 – Programming and Scripting Rev. 12

while [$today = mon]
do
 echo Today is Monday
done

Outputs the following:
$ weekday
Today is Monday

This is also an excellent means to test a numeric value to and continually
evaluate the condition until the evaluation is no longer true.

20.3.1.6.6 Until Loop until . . . do
The until loop processes a set of statements until the specified condition is

true. The syntax of the conditional statement is:
until condition
do
 statements to be performed
done

This performs the following actions:
1. The condition is tested, if true then
2. Perform the ‘statements to be performed’
3. If condition is false, then exit

This is the inverse of the while condition. The action statements are to be
performed until the condition is true.

As an example:
Script j4
j = 2
until [$j -eq 4]
do
 echo The value of j is $j
 j = $(($j + 1))
done

Note that for the line “j = $(($j + 1))”, this is an arithmetic expansion. In this
case, the variable is assigned the value of what the existing variable j is, plus 1.

Outputs the following:
$ j4
The value of j is 2
The value of j is 3

20.3.1.6.7 Case Selection case . . . in . . . pattern
The case selection will select a value from the specified pattern and issue the

statements relative to that set of commands. The syntax of the conditional
statement is:

HLUL20
© Dennis Rice

17 / 24

Chapter 20 – Programming and Scripting Rev. 12

case test-string in
 pattern1
 first statements to be performed
 ;;
 pattern2
 second statements to be performed
 ;;
 pattern3
 third statements to be performed
 ;;
 . . .
esac

This performs the following case tests:
1. Variable test-string is tested to see if it is equal to pattern1
2. If true, ‘first statements to be performed’ are completed
3. Case statement is exited
4. If false, test-string is tested to see if it is equal to pattern2
5. If true, ‘second statements to be performed’ are completed
6. Case statement is exited
7. If false, test-string is tested to see if it is equal to pattern3
8. If true, ‘third statements to be performed are completed
9. Case statement is exited
10. If false, case statement is exited

As an example:
Script comncase
clear
echo -e “ \n USER MENU\n”
echo “ a. List contents of the /lab directory”
echo “ b. Show attributes of the files in the /lab directory”
echo -e “ c. Display the full attributes of the /lab directory\n”
echo -e “Type in a, b, or c : \c”
read inkey
case “$inkey” in
 a)
 ls /lab
 ;;
 b)
 ls –l /lab/*
 ;;
 c)
 stat /lab
 ;;
 *)
 echo “Your entry of \” $inkey \” is not valid”
 ;;

HLUL20
© Dennis Rice

18 / 24

Chapter 20 – Programming and Scripting Rev. 12

esac

Note that in this example that we have a new command, “read”. This is used
to accept input from the keyboard that the user types in.

Outputs the following:
$ comncase

 USER MENU

 a. List contents of the /lab directory
 b. Show attributes of the files in the /lab directory
 c. Display the full attributes of the /lab directory

 Type in a, b, or c : d
Your entry of “ d ”is not valid

A non-quoted backslash `\` is the Bash escape character. It preserves the
literal value of the next character that follows, with the exception of newline. If a
\newline pair appears, and the backslash itself is not quoted, the \newline is
treated as a line continuation (that is, it is removed from the input stream and
effectively ignored).

Backslash escape sequences, if present, are decoded as follows:
\a alert (bell)
\b backspace
\e an escape character (not ANSI C)
\f form feed
\n newline
\c wait for input
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\' single quote
\” double quote
\nnn the eight-bit character whose value is the octal value nnn

(one to three digits)
\xHH the eight-bit character whose value is the hexadecimal value

HH (two hex digits)
\cx a control-x character

20.3.2 Computational Commands
Bash is also capable of supporting may computational functions. Some of

the computational function include:
var++ Increment variable by one
var-- Decrement variable by one
+ Add two values or variables
- Subtract the second value or variable from the first

HLUL20
© Dennis Rice

19 / 24

Chapter 20 – Programming and Scripting Rev. 12

** Exponentially raise the first value or variable to the power of the
second

* Multiply the first value or variable by the second
/ Divide the first value or variable by the second
% Divide the first value or variable by the second, retain only the

remainder
== Test the first value or variable to see if it is equal to the second
!= Test the first value or variable to see if it is not equal to the

second
& Bitwise, AND the first value or variable with the second
| Bitwise, OR the first value or variable with the second
^ Bitwise, Exclusive OR the first value or variable with the second
&& Logical AND the first value or variable with the second
|| Logical OR the first value or variable with the second
= Assign the second value or variable to the first

These computational functions may be applied in the same manner as any
other mathematical process.

20.3.3 Running a Script
After one has written their script, it needs to be run. There are several ways

that it may be executed.

20.3.2.1 Bash Script
Since the script has been written, the easiest way to test and run it is by using

the bash command:
bash scriptfile.sh

From this command, the script will be executed.
Although not necessary, it is convention to terminate a shell script with a

“.sh”. From this the user may easily scan a list of files and recognize those that
are shell scripts.

20.3.2.2 Stand-alone Execution
Naturally it is not desired to always have to issue the bash command prior to

executing a script, especially if it is being called from another script or program.
The first requirement is to specify what the script is to be executed by. To do

this the very first line of the script contains the command sequence:
#!/bin/bash

Previously you have been told that the “#” meant that the line was a
comment, but in the case of a script for the first line only, this is not true –
because the “!” follows. This character sequence is often called the “Shabang”.
(Recall that the “!” is commonly called the “bang”.) Since all shell interpreters are
located in the /bin directory, the “/bin/bash” specifies that the script will be
executed using the bash command that is located in the /bin directory.

HLUL20
© Dennis Rice

20 / 24

Chapter 20 – Programming and Scripting Rev. 12

In order to make the script executable, the permissions must be modified.
Recall that each entity, owner, group and world, each have permissions of read
(r), write (w), and execute (x). The execute permission must be changed to an x
value rather than a dash (-). This is done by issuing the command:

chmod a+x scriptfile.sh

In one command the execute permission has been modified to allow all
(owner, group and world) to execute the command.

To verify this, issue the command:
ls –l scriptfile.sh

and you will observe that the execute permission has been modified for all users.
To issue the script from the command line, we need to specify the path to the

script and the script name. For example:
$ /lab/scriptname.sh

would execute the script file “scriptname.sh” in the /lab directory.
If we are in the /lab directory, then we do not need to specify the full path, but

we must tell the system where to start its search for the script file. In this case
we issue the command:

$. /scriptname.sh

where the dot “.” represents our present location and the slash specifies this
directory. Note that there is no space between the dot and the slash.

20.4 Command Line Interpreter Programs
Several programs are available to the user to that allow simple programming,

yet provide very powerful tools. Two such programs are perl and python. Both
have a common base to the bash scripting, allowing for slightly different syntax
of commands, but with much more power.

20.4.1 Perl Programming Language
The Perl language has a strong similar structure to the bash script – but it

does have its differences. Knowledge of the C Language and of bash lends to
the learning curve, but they are not necessary. In this discussion, we will focus
on the minor differences and improvements that Perl provides over bash.

20.4.2 Python Programming Language
In a similar way, the Python language also has a lot of similarities to bash and

the C language. But it too has its own set of differences that make it unique.
Here again we will focus on the benefits of using the Python language.

HLUL20
© Dennis Rice

21 / 24

Chapter 20 – Programming and Scripting Rev. 12

20.5 Compiled Programs
Unix and Linux do not lack in advanced programming languages. In fact both

Unix and Linux are based on the C Language. In addition, C++ and Fortran (for
those that remember that ancient language) are also available.

20.5.1 C Programming Language
The C Language was originally written back in the 1960’s as a new approach

to programming. It brought a major improvement to programming style, with an
emphasis on a strong structured format. Additionally it provides features that
allow the user to access features of the operating system that were previously
unavailable. Obviously, the discussion what features are available is way
beyond the scope of this text. Many books have been written and college
courses dedicated to the topic. For the user that has the need to write C
language programs, it is here.

A few words need to be noted. The C language was used to write the Unix
Operating System, and if you wish to recompile the Kernel, you need to use the
Unix / Linux version. This is because the Microsoft version does not comply with
the full standards that the Unix / Linux version does.

20.5.2 C++ Programming Language
The C++ Language is an enhancement of the C language. The objective of

using C++ is to allow object oriented programming, which provides the ability to
include the system environment within the language. This provides additional
features that may be used to enhance the writing of code. Again, discussion of
this language is far beyond the scope of this text. It too has many college
courses dedicated to this topic.

20.5.3 Fortran Programming Language
The Fortran Programming Language might be considered a very outdated

language, but there are many programs that have been written that are still
operational. It does not have all of the advanced features of more modern
languages, and thus has been delegated to being a language that is rarely
taught in today’s education, and few, if any books are still published about it. If
one is to program in Fortran, then some dedicated research will be required to
find material on how to use the language may be required.

20.6 Web Based Languages
For the days of the Internet, use of the World Wide Web to find information is

at the forefront of our life. Thus several different languages have been
developed to take advantage of the web page environment.

20.6.1 PHP Programming Language

HLUL20
© Dennis Rice

22 / 24

Chapter 20 – Programming and Scripting Rev. 12

20.6.2 Java Programming Language

20.6.3 Ruby Programming Language

20.7 Machine Language Programming
The base for all programming languages is Assembler – one step above

machine language. Absolute total power for processing speed and compactness
is available in assembler, at a cost of the programmer having to memorize a
large number of acronyms for data manipulation. The knowledge of assembler
is well beyond the scope of this text, thus will not be reviewed. Least it be said,
in performance, assembler is the fastest of all languages.

The application for running assembler is:
as filename

20.8 Commands Used in this Chapter
AS Programming Language
awk Editing Programming Language
bash Command shell and shell programming language
C Programming Language
C++ Programming Language
chmod Modifies the permissions of a file
echo Echos attached string to standard output
Fortran Programming Language
gawk GNU Editing Programming Language
Java Programming Language
ls - l List file's attributes
Perl Programming Language
PHP Programming Language
Python Programming Language
Ruby Programming Language
sed Stream Editor

20.9 Chapter Review Questions

HLUL20
© Dennis Rice

23 / 24

Chapter 20 – Programming and Scripting Rev. 12

Chapter Index
A

Assembler Language 23
Awk 7

B
Bash Script 20

C
C Language 22
C++ Language 22
Case Selection Condition 17
Command Line Interpreter Programs

21
Compiled Programs 22
Computational Commands 19
Conditional Statement

Case Selection 17
Computational Commands 19
For Loop 13
If - ElseIf 15
If Condition 14
If Else 14
Until Loop 17
While Loop 16

Conditional Statements 13
F

For Loop 13
Fortran Language 22

G
Gawk 7

I
If - ElseIf Condition 15
If Condition 14
If Else Condition 14

J
Java Language 23

L
Language

Assembler 23
C 22

C++ 22
Fortran 22
Java 23
Perl 21
PHP 22
Python 21
Ruby 23

M
Machine Language Programming 23

P
Perl Language 21
PHP Language 22
Python Language 21

R
Ruby Language 23

S
Script 20
Script Execution 20
Script Programming 9
Scripts

Comparison Variables 11
Conditional Statements 13
Echo Command 9
Elementary Commands 9
Programming 9
Quotation Marks 10
User Input 12
Variables 11

sed 3
Shabang 20
Stream Editor 3

U
Until Loop Condition 17

W
Web Based Languages 22
While Loop Condition 16

#
#! 20

HLUL20
© Dennis Rice

24 / 24

	Programming and Scripting
	20.1	Stream Editor
	20.1.1	Command Syntax
	20.1.2	Sed Examples

	20.2	Awk and Gawk
	20.3	Script Programming 4,5
	20.3.1	Elementary Commands
	20.3.1.1	Echo Command
	20.3.1.2	Quotation Marks
	You are user $USER
	Today’s date is Mon Feb 16 10:36 CST 2004
	echo “You are user $USER and today is `date`”

	20.3.1.3	Variables
	mday = Monday
	echo Today is $mday
	Today is Monday
	Tomorrow is Tuesday

	wdays1 = Monday Tuesday Wednesday Thursday Friday
	Monday Tuesday Wednesday Thursday Friday

	echo wdays2
	Monday Tuesday Wednesday Thursday Friday

	20.3.1.4	Comparison Variables
	20.3.1.5	User Input Arguments
	Script display
	echo “$0”	Displays the original command or script name
	Script display

	20.3.1.6	Conditional Statements
	20.3.1.6.1	For Loop			for . . . in . . . do
	for Loop-Index in Argument-List

	20.3.1.6.2	If Condition			if . . . then
	if condition-statement

	20.3.1.6.3	If Else Condition		if . . . then . . . else
	if condition
	Script truestate

	20.3.1.6.4	If – ElseIf Condition		if . . . then . . . elif
	if condition1
	Script truestate

	20.3.1.6.5	While Loop			while . . . do
	while condition

	20.3.1.6.6	Until Loop			until . . . do
	until condition

	20.3.1.6.7	Case Selection		case . . . in . . . pattern

	20.3.2		Computational Commands
	20.3.3	Running a Script
	20.3.2.1	Bash Script
	20.3.2.2	Stand-alone Execution

	20.4	Command Line Interpreter Programs
	20.4.1	Perl Programming Language
	20.4.2	Python Programming Language

	20.5	Compiled Programs
	20.5.1	C Programming Language
	20.5.2	C++ Programming Language
	20.5.3	Fortran Programming Language

	20.6	Web Based Languages
	20.6.1	PHP Programming Language
	20.6.2	Java Programming Language
	20.6.3	Ruby Programming Language

	20.7	Machine Language Programming
	20.8	Commands Used in this Chapter
	20.9	Chapter Review Questions

