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Beowulf Cluster

● Collection of normally identical, 
commodity grade computers 
networked together

● Invented at NASA in 1994
● No requirement for any specific 
OS or software



  

Beowulf on the Pi

● Pi released in February 2012
● First Pi clusters started to appear 
as soon as Pi's could be 
purchased in quantity, sometime 
in early 2013



  

Parallel Computing is DIY

● Very little commercial software 
available to run on compute 
clusters

● Using one requires programming



  

Common languages

● FORTRAN
● C
● C++
● Other languages can be used 
but examples are harder to find



  

Message Passing Interface

● Starting in the 80's as 
supercomputers were evolving into 
massively parallel machines a 
number of message passing 
environments developed

● In the early 90's an effort was started 
to develop a standard.



  

MPI-1

● First standard released in 1994
● Most popular, and one of the 
earliest implementations was 
MPICH produced by Argonne 
labs



  

MPICH

● Adheres to MPI-1,MPI-2, and 
MPI-3

● Distributed as source
● Tested on Linux (ia32, x86-64), 
Mac OS/X (Power PC and Intel),  
Solaris, and Windows



  

MPICH

● Cluster can be made of any 
combination of CPU 
architectures and operating 
systems that are running the 
same version of MPICH

● https://www.mpich.org



  

MPICH
● We will be using the latest stable release 
MPICH 3.1.4

● Because distributed as source you need to 
compile, which takes a fair bit of time on the 
Raspberry Pi

● Providing Raspian Image with all software 
already installed, just need to modify 
configuration for each node.



  

Why you need parallel processing

● If you have a multi-core machine 
(like the Pi2) and you only program 
in a traditional manner, you are only 
utilizing a fraction of the power of the 
machine.

● You can run MPICH on a single 
computer if it has multiple cores!



  

Setting up MPICH on your own

● Download the latest version 
from: 
http://www.mpich.org/downloads/

● Create a ~/mpich directory
● Create a ~/mpich/build directory
● Create a ~/mpich/install directory

http://www.mpich.org/downloads/


  

Setting up MPICH on your own

● Unarchive the downloaded mpich 
source to ~/mpich/mpich-3.1.4 (or 
whatever version your using)
pi@PiClstr01 ~/mpich $ ls l
total 12
drwxrxrx   7 pi pi 4096 Aug  5 19:16 build
drwxrxrx   6 pi pi 4096 Aug  5 21:10 install
drwxrxrx  11 pi pi 4096 Feb 20 15:06 mpich3.1.4
pi@PiClstr01 ~/mpich $

mailto:pi@PiClstr01
mailto:pi@PiClstr01


  

Setting up MPICH on your own

● Run configure from your build 
directory (must have gFortran 
installed first).

pi@PiClstr01 ~/mpich $ ../mpich3.1.4/configure \ 
–prefix=/home/pi/mpich/install

mailto:pi@PiClstr01


  

Setting up MPICH on your own

● Build the application

pi@PiClstr01 ~/mpich $ make

pi@PiClstr01 ~/mpich $ make install

mailto:pi@PiClstr01
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Setting up MPICH on your own

● Add the ~/mpich/install/bin to 
your path



  

Setting up MPICH on your own

● Set up SSH on your primary node
pi@PiClstr01 ~/ $ sshkeygen t rsa b 4096 C "pi@PiClstr01"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/pi/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/pi/.ssh/id_rsa.
Your public key has been save in /home/pi/.ssh/id_rsa.pub.
The key fingerprint is:
25:ad:d0:95:42:25:b3:cc:ca:a0:4c:a8:c2:7b:f0:ca pi@PiClstr01
The key's randomart image is:
+[ RSA 4096]+
|       .+.o.     |
|       ..*.      |
|      . *.o      |
|       * *       |
|        S        |
| o     .         |
|. * . .          |
|=E*   .          |
++



  

Setting up MPICH on your own

● Create duplicate set-up, including user 
and directory structure for all MPICH files

● Copy primary node SSH credentials to 
each of the secondary nodes

pi@PiClstr01 ~/ $ ssh-copy-id 192.168.0.#
The authenticity of host '192.168.0.# (192.168.0.#)' can't be established.
ECDSA key fingerprint is 25:ad:', and checkd0:95:42:25:b3:cc:ca:a0:4c:a8:c2:7b:f0:ca.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.#' (ECDSA) to the list of known hosts.
Now try logging into the machine, with 'ssh 192.168.0.#', and check in:

  ~/.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.



  

Setting up MPICH on your own

● All nodes must have either a static 
IP or always receive the same IP 
from your DHCP server.

● List all nodes:cores in a text file that 
you provide to MPIEXEC to tell it 
what machines to run your 
application on.



  

Setting up MPICH on your own

● Now you just need to write some 
software

● Provided image includes what is 
needed for Fortran 95, C, C++

● Other languages that have bindings 
for MPICH include Python and R



  

Modify your copy for your node

● Change name in the /etc/hosts
● Change ip address in the 

/etc/network/interfaces
● Use the information on the card I 

handed out



  

Our Example

● Needs a low network bandwidth for 
communication between processes

● Needs to have ability for highly 
parallel, independent computations

● We will use classic Mandelbrot set 
calculation as our example



  

Mandelbrot Set



  

Mandelbrot Set
● Equation
● The formal definition can remind you of a university math 
class you hated; however, the idea is pretty simple.

● If you iterate the equation and after some number of 
iterations the value  is still less than 2, then you can 
assume point is within set, otherwise assign the point a 
color to indicate its proximity to the set.

● The colors are assigned to the points outside of the set 
based upon the number of iterations it takes to determine 
the point is not within the set



  

Running pmandel
● Mpiexec n 64 bin/pmandel xscale 2000 yscale 2000 i

Welcome to the Mandelbrot/Julia set explorer.
input xmin ymin xmax ymax max_iter, (0 0 0 0 0 to quit):
2.0 1.0 1.0 1.0 1000
read <2.0 01.0 1.0 1.0 1000
>from stdin
x0,y0 = (2.0000000, 1.000000) x1,y1 = (1.000000,1.000000) max_iter = 1000
input xmin ymin xmax ymax max_iter, (0 0 0 0 0 to quit):
0 0 0 0 0
read <0 0 0 0 0
> from stdin
x0,y0 = (0.000000, 0.000000) x1,y1 = (0.000000,0.000000) max_iter = 0
Done calculating mandelbrot, now creating file
pmandel.ppm
width: 2000
height: 2000
colors: 100
str: Mandelbrot over (0.0000000.000000,0.0000000.000000), size 2000 x 2000
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