
  

Compute Cluster on a PiCompute Cluster on a Pi
byby

Walter AndersonWalter Anderson



  

Beowulf Cluster

● Collection of normally identical, 
commodity grade computers 
networked together

● Invented at NASA in 1994
● No requirement for any specific 
OS or software



  

Beowulf on the Pi

● Pi released in February 2012
● First Pi clusters started to appear 
as soon as Pi's could be 
purchased in quantity, sometime 
in early 2013



  

Parallel Computing is DIY

● Very little commercial software 
available to run on compute 
clusters

● Using one requires programming



  

Common languages

● FORTRAN
● C
● C++
● Other languages can be used 
but examples are harder to find



  

Message Passing Interface

● Starting in the 80's as 
supercomputers were evolving into 
massively parallel machines a 
number of message passing 
environments developed

● In the early 90's an effort was started 
to develop a standard.



  

MPI-1

● First standard released in 1994
● Most popular, and one of the 
earliest implementations was 
MPICH produced by Argonne 
labs



  

MPICH

● Adheres to MPI-1,MPI-2, and 
MPI-3

● Distributed as source
● Tested on Linux (ia32, x86-64), 
Mac OS/X (Power PC and Intel),  
Solaris, and Windows



  

MPICH

● Cluster can be made of any 
combination of CPU 
architectures and operating 
systems that are running the 
same version of MPICH

● https://www.mpich.org



  

MPICH
● We will be using the latest stable release 
MPICH 3.1.4

● Because distributed as source you need to 
compile, which takes a fair bit of time on the 
Raspberry Pi

● Providing Raspian Image with all software 
already installed, just need to modify 
configuration for each node.



  

Why you need parallel processing

● If you have a multi-core machine 
(like the Pi2) and you only program 
in a traditional manner, you are only 
utilizing a fraction of the power of the 
machine.

● You can run MPICH on a single 
computer if it has multiple cores!



  

Setting up MPICH on your own

● Download the latest version 
from: 
http://www.mpich.org/downloads/

● Create a ~/mpich directory
● Create a ~/mpich/build directory
● Create a ~/mpich/install directory

http://www.mpich.org/downloads/


  

Setting up MPICH on your own

● Unarchive the downloaded mpich 
source to ~/mpich/mpich-3.1.4 (or 
whatever version your using)
pi@PiClstr01 ~/mpich $ ls l
total 12
drwxrxrx   7 pi pi 4096 Aug  5 19:16 build
drwxrxrx   6 pi pi 4096 Aug  5 21:10 install
drwxrxrx  11 pi pi 4096 Feb 20 15:06 mpich3.1.4
pi@PiClstr01 ~/mpich $

mailto:pi@PiClstr01
mailto:pi@PiClstr01


  

Setting up MPICH on your own

● Run configure from your build 
directory (must have gFortran 
installed first).

pi@PiClstr01 ~/mpich $ ../mpich3.1.4/configure \ 
–prefix=/home/pi/mpich/install

mailto:pi@PiClstr01


  

Setting up MPICH on your own

● Build the application

pi@PiClstr01 ~/mpich $ make

pi@PiClstr01 ~/mpich $ make install

mailto:pi@PiClstr01
mailto:pi@PiClstr01


  

Setting up MPICH on your own

● Add the ~/mpich/install/bin to 
your path



  

Setting up MPICH on your own

● Set up SSH on your primary node
pi@PiClstr01 ~/ $ sshkeygen t rsa b 4096 C "pi@PiClstr01"
Generating public/private rsa key pair.
Enter file in which to save the key (/home/pi/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/pi/.ssh/id_rsa.
Your public key has been save in /home/pi/.ssh/id_rsa.pub.
The key fingerprint is:
25:ad:d0:95:42:25:b3:cc:ca:a0:4c:a8:c2:7b:f0:ca pi@PiClstr01
The key's randomart image is:
+[ RSA 4096]+
|       .+.o.     |
|       ..*.      |
|      . *.o      |
|       * *       |
|        S        |
| o     .         |
|. * . .          |
|=E*   .          |
++



  

Setting up MPICH on your own

● Create duplicate set-up, including user 
and directory structure for all MPICH files

● Copy primary node SSH credentials to 
each of the secondary nodes

pi@PiClstr01 ~/ $ ssh-copy-id 192.168.0.#
The authenticity of host '192.168.0.# (192.168.0.#)' can't be established.
ECDSA key fingerprint is 25:ad:', and checkd0:95:42:25:b3:cc:ca:a0:4c:a8:c2:7b:f0:ca.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '192.168.0.#' (ECDSA) to the list of known hosts.
Now try logging into the machine, with 'ssh 192.168.0.#', and check in:

  ~/.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.



  

Setting up MPICH on your own

● All nodes must have either a static 
IP or always receive the same IP 
from your DHCP server.

● List all nodes:cores in a text file that 
you provide to MPIEXEC to tell it 
what machines to run your 
application on.



  

Setting up MPICH on your own

● Now you just need to write some 
software

● Provided image includes what is 
needed for Fortran 95, C, C++

● Other languages that have bindings 
for MPICH include Python and R



  

Modify your copy for your node

● Change name in the /etc/hosts
● Change ip address in the 

/etc/network/interfaces
● Use the information on the card I 

handed out



  

Our Example

● Needs a low network bandwidth for 
communication between processes

● Needs to have ability for highly 
parallel, independent computations

● We will use classic Mandelbrot set 
calculation as our example



  

Mandelbrot Set



  

Mandelbrot Set
● Equation
● The formal definition can remind you of a university math 
class you hated; however, the idea is pretty simple.

● If you iterate the equation and after some number of 
iterations the value  is still less than 2, then you can 
assume point is within set, otherwise assign the point a 
color to indicate its proximity to the set.

● The colors are assigned to the points outside of the set 
based upon the number of iterations it takes to determine 
the point is not within the set



  

Running pmandel
● Mpiexec n 64 bin/pmandel xscale 2000 yscale 2000 i

Welcome to the Mandelbrot/Julia set explorer.
input xmin ymin xmax ymax max_iter, (0 0 0 0 0 to quit):
2.0 1.0 1.0 1.0 1000
read <2.0 01.0 1.0 1.0 1000
>from stdin
x0,y0 = (2.0000000, 1.000000) x1,y1 = (1.000000,1.000000) max_iter = 1000
input xmin ymin xmax ymax max_iter, (0 0 0 0 0 to quit):
0 0 0 0 0
read <0 0 0 0 0
> from stdin
x0,y0 = (0.000000, 0.000000) x1,y1 = (0.000000,0.000000) max_iter = 0
Done calculating mandelbrot, now creating file
pmandel.ppm
width: 2000
height: 2000
colors: 100
str: Mandelbrot over (0.0000000.000000,0.0000000.000000), size 2000 x 2000


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

